See axolotl config
axolotl version: 0.9.1.post1
base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-5-comp3-sort-pate-10000
output_dir: ./outputs/out/Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-5-comp3-sort-pate-10000
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-5-comp3-sort-pate-10000
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: dset_comp3.0_sortpatent_count_pat200_in5_num10134_10000.jsonl
type: chat_template
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true
sequence_len: 2470
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2 # This will be automatically adjusted based on available GPU memory
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-5-comp3-sort-pate-10000
This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the dset_comp3.0_sortpatent_count_pat200_in5_num10134_10000.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.3272
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6609 | 0.0025 | 1 | 0.6722 |
0.3914 | 0.3350 | 133 | 0.4019 |
0.3717 | 0.6700 | 266 | 0.3707 |
0.3371 | 1.0050 | 399 | 0.3559 |
0.3386 | 1.3401 | 532 | 0.3469 |
0.3213 | 1.6751 | 665 | 0.3410 |
0.3182 | 2.0101 | 798 | 0.3363 |
0.3079 | 2.3451 | 931 | 0.3330 |
0.2697 | 2.6801 | 1064 | 0.3306 |
0.3109 | 3.0151 | 1197 | 0.3283 |
0.2876 | 3.3501 | 1330 | 0.3278 |
0.2967 | 3.6851 | 1463 | 0.3272 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chem-claude-5-comp3-sort-pate-10000
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct