See axolotl config
axolotl version: 0.8.1
base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: diverse_chem_axolotl_ft
output_dir: ./outputs/out/diverse_chem_axolotl_ft
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-diverse
hub_strategy: every_save
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: dset_diverse_chem_4638.jsonl
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
# test_datasets:
# - path: 5000_benign_val.json
# type: chat_template
# split: train
save_safetensors: true
sequence_len: 1700
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-chem
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-diverse
This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the dset_diverse_chem_4638.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.5049
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9975 | 0.0039 | 1 | 0.9459 |
0.6828 | 0.3333 | 86 | 0.6280 |
0.5417 | 0.6667 | 172 | 0.5726 |
0.5398 | 1.0 | 258 | 0.5473 |
0.4793 | 1.3333 | 344 | 0.5314 |
0.5365 | 1.6667 | 430 | 0.5208 |
0.4502 | 2.0 | 516 | 0.5124 |
0.4665 | 2.3333 | 602 | 0.5111 |
0.4582 | 2.6667 | 688 | 0.5063 |
0.4731 | 3.0 | 774 | 0.5032 |
0.4052 | 3.3333 | 860 | 0.5060 |
0.4006 | 3.6667 | 946 | 0.5053 |
0.4301 | 4.0 | 1032 | 0.5049 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-diverse
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct