See axolotl config
axolotl version: 0.9.1
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
output_dir: ./outputs/out/Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
hub_model_id: cgifbribcgfbi/alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl
type: chat_template
field_messages: messages
dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true
sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4 # This will be automatically adjusted based on available GPU memory
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
This model is a fine-tuned version of mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated on the dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.4583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7 | 0.0061 | 1 | 0.8766 |
0.6414 | 0.3354 | 55 | 0.6293 |
0.5608 | 0.6707 | 110 | 0.5473 |
0.4733 | 1.0061 | 165 | 0.5161 |
0.5142 | 1.3415 | 220 | 0.4954 |
0.4771 | 1.6768 | 275 | 0.4824 |
0.423 | 2.0122 | 330 | 0.4750 |
0.4375 | 2.3476 | 385 | 0.4676 |
0.4311 | 2.6829 | 440 | 0.4630 |
0.4019 | 3.0183 | 495 | 0.4620 |
0.4726 | 3.3537 | 550 | 0.4589 |
0.4677 | 3.6890 | 605 | 0.4583 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 143
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cgifbribcgfbi/Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pat
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct