File size: 4,249 Bytes
19856cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
library_name: peft
license: llama3.1
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
tags:
- axolotl
- generated_from_trainer
datasets:
- dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl
model-index:
- name: alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.9.1`
```yaml
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
output_dir: ./outputs/out/Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000
hub_model_id: cgifbribcgfbi/alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl
    type: chat_template
    split: train

dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true

sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4  # This will be automatically adjusted based on available GPU memory
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>
```

</details><br>

# alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000

This model is a fine-tuned version of [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) on the dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5731

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7           | 0.0061 | 1    | 0.8766          |
| 0.6465        | 0.3354 | 55   | 0.6349          |
| 0.5865        | 0.6707 | 110  | 0.5731          |


### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1