See axolotl config
axolotl version: 0.9.1
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
output_dir: ./outputs/out/Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
hub_model_id: cgifbribcgfbi/alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: chemNLP/chemistry-bookshelves-merged
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true
sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4 # This will be automatically adjusted based on available GPU memory
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
This model is a fine-tuned version of mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated on the chemNLP/chemistry-bookshelves-merged dataset. It achieves the following results on the evaluation set:
- Loss: 0.9113
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3747 | 0.0032 | 1 | 1.0576 |
1.1845 | 0.3344 | 104 | 0.9699 |
1.3066 | 0.6688 | 208 | 0.9382 |
1.0796 | 1.0032 | 312 | 0.9353 |
1.1205 | 1.3376 | 416 | 0.9221 |
1.2621 | 1.6720 | 520 | 0.9191 |
1.2658 | 2.0064 | 624 | 0.9207 |
1.4163 | 2.3408 | 728 | 0.9135 |
1.3644 | 2.6752 | 832 | 0.9122 |
1.3775 | 3.0096 | 936 | 0.9149 |
1.0673 | 3.3441 | 1040 | 0.9116 |
1.3545 | 3.6785 | 1144 | 0.9113 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 138
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for cgifbribcgfbi/Meta-Llama-3.1-8B-Instruct-abliterated-chem-textbook
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct