Built with Axolotl

See axolotl config

axolotl version: 0.9.1

base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
output_dir: ./outputs/out/Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000
hub_model_id: cgifbribcgfbi/alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: chemNLP/chemistry-bookshelves-merged
    type: completion

dataset_prepared_path: last_run_prepared
val_set_size: 0.04
save_safetensors: true

sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: finetune-sweep
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4  # This will be automatically adjusted based on available GPU memory
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

alpha32_r64_lr0.00002_Meta-Llama-3.1-_textbook_5000

This model is a fine-tuned version of mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated on the chemNLP/chemistry-bookshelves-merged dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
1.3747 0.0032 1 1.0576
1.1845 0.3344 104 0.9699
1.3066 0.6688 208 0.9382
1.0796 1.0032 312 0.9353
1.1205 1.3376 416 0.9221
1.2621 1.6720 520 0.9191
1.2658 2.0064 624 0.9207
1.4163 2.3408 728 0.9135
1.3644 2.6752 832 0.9122
1.3775 3.0096 936 0.9149
1.0673 3.3441 1040 0.9116
1.3545 3.6785 1144 0.9113

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
138
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cgifbribcgfbi/Meta-Llama-3.1-8B-Instruct-abliterated-chem-textbook

Dataset used to train cgifbribcgfbi/Meta-Llama-3.1-8B-Instruct-abliterated-chem-textbook