Qwen2.5-7B-Instruct-PsyCourse-fold6
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0499
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8724 | 0.0770 | 50 | 0.6925 |
0.1566 | 0.1539 | 100 | 0.1080 |
0.0875 | 0.2309 | 150 | 0.0727 |
0.0734 | 0.3078 | 200 | 0.0559 |
0.0553 | 0.3848 | 250 | 0.0525 |
0.0521 | 0.4617 | 300 | 0.0499 |
0.0466 | 0.5387 | 350 | 0.0471 |
0.0641 | 0.6156 | 400 | 0.0452 |
0.0353 | 0.6926 | 450 | 0.0445 |
0.0306 | 0.7695 | 500 | 0.0408 |
0.048 | 0.8465 | 550 | 0.0382 |
0.0373 | 0.9234 | 600 | 0.0377 |
0.0306 | 1.0004 | 650 | 0.0359 |
0.037 | 1.0773 | 700 | 0.0376 |
0.0307 | 1.1543 | 750 | 0.0356 |
0.03 | 1.2312 | 800 | 0.0348 |
0.0342 | 1.3082 | 850 | 0.0349 |
0.0199 | 1.3851 | 900 | 0.0341 |
0.0405 | 1.4621 | 950 | 0.0354 |
0.0329 | 1.5391 | 1000 | 0.0330 |
0.0334 | 1.6160 | 1050 | 0.0333 |
0.0325 | 1.6930 | 1100 | 0.0346 |
0.0207 | 1.7699 | 1150 | 0.0327 |
0.0216 | 1.8469 | 1200 | 0.0341 |
0.03 | 1.9238 | 1250 | 0.0341 |
0.023 | 2.0008 | 1300 | 0.0321 |
0.0148 | 2.0777 | 1350 | 0.0336 |
0.0283 | 2.1547 | 1400 | 0.0345 |
0.0132 | 2.2316 | 1450 | 0.0357 |
0.0199 | 2.3086 | 1500 | 0.0330 |
0.0144 | 2.3855 | 1550 | 0.0360 |
0.015 | 2.4625 | 1600 | 0.0338 |
0.0206 | 2.5394 | 1650 | 0.0330 |
0.0184 | 2.6164 | 1700 | 0.0333 |
0.0256 | 2.6933 | 1750 | 0.0327 |
0.0233 | 2.7703 | 1800 | 0.0344 |
0.0229 | 2.8472 | 1850 | 0.0320 |
0.0177 | 2.9242 | 1900 | 0.0335 |
0.0295 | 3.0012 | 1950 | 0.0336 |
0.011 | 3.0781 | 2000 | 0.0370 |
0.009 | 3.1551 | 2050 | 0.0408 |
0.0101 | 3.2320 | 2100 | 0.0405 |
0.011 | 3.3090 | 2150 | 0.0401 |
0.0127 | 3.3859 | 2200 | 0.0385 |
0.0099 | 3.4629 | 2250 | 0.0380 |
0.0109 | 3.5398 | 2300 | 0.0393 |
0.0048 | 3.6168 | 2350 | 0.0399 |
0.011 | 3.6937 | 2400 | 0.0397 |
0.0066 | 3.7707 | 2450 | 0.0404 |
0.0089 | 3.8476 | 2500 | 0.0418 |
0.0129 | 3.9246 | 2550 | 0.0426 |
0.0096 | 4.0015 | 2600 | 0.0414 |
0.0015 | 4.0785 | 2650 | 0.0432 |
0.0042 | 4.1554 | 2700 | 0.0452 |
0.0024 | 4.2324 | 2750 | 0.0466 |
0.0032 | 4.3093 | 2800 | 0.0475 |
0.0024 | 4.3863 | 2850 | 0.0487 |
0.0034 | 4.4633 | 2900 | 0.0491 |
0.0016 | 4.5402 | 2950 | 0.0492 |
0.0022 | 4.6172 | 3000 | 0.0494 |
0.0066 | 4.6941 | 3050 | 0.0498 |
0.0023 | 4.7711 | 3100 | 0.0499 |
0.0053 | 4.8480 | 3150 | 0.0498 |
0.002 | 4.9250 | 3200 | 0.0499 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support