Qwen2.5-7B-Instruct-PsyCourse-fold9
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the course-train-fold1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8724 | 0.0770 | 50 | 0.6930 |
0.1565 | 0.1539 | 100 | 0.1080 |
0.0877 | 0.2309 | 150 | 0.0730 |
0.0732 | 0.3078 | 200 | 0.0560 |
0.0544 | 0.3848 | 250 | 0.0531 |
0.0517 | 0.4617 | 300 | 0.0498 |
0.0468 | 0.5387 | 350 | 0.0468 |
0.065 | 0.6156 | 400 | 0.0455 |
0.0349 | 0.6926 | 450 | 0.0439 |
0.0292 | 0.7695 | 500 | 0.0407 |
0.0477 | 0.8465 | 550 | 0.0385 |
0.0372 | 0.9234 | 600 | 0.0376 |
0.0309 | 1.0004 | 650 | 0.0359 |
0.0363 | 1.0773 | 700 | 0.0382 |
0.0306 | 1.1543 | 750 | 0.0356 |
0.0318 | 1.2312 | 800 | 0.0355 |
0.0339 | 1.3082 | 850 | 0.0356 |
0.0209 | 1.3851 | 900 | 0.0346 |
0.0399 | 1.4621 | 950 | 0.0349 |
0.0326 | 1.5391 | 1000 | 0.0332 |
0.0331 | 1.6160 | 1050 | 0.0334 |
0.0324 | 1.6930 | 1100 | 0.0343 |
0.0213 | 1.7699 | 1150 | 0.0331 |
0.0217 | 1.8469 | 1200 | 0.0347 |
0.0289 | 1.9238 | 1250 | 0.0339 |
0.0227 | 2.0008 | 1300 | 0.0328 |
0.0163 | 2.0777 | 1350 | 0.0333 |
0.0288 | 2.1547 | 1400 | 0.0350 |
0.0139 | 2.2316 | 1450 | 0.0363 |
0.0205 | 2.3086 | 1500 | 0.0337 |
0.0164 | 2.3855 | 1550 | 0.0356 |
0.0147 | 2.4625 | 1600 | 0.0339 |
0.0223 | 2.5394 | 1650 | 0.0327 |
0.0179 | 2.6164 | 1700 | 0.0330 |
0.0261 | 2.6933 | 1750 | 0.0321 |
0.0235 | 2.7703 | 1800 | 0.0328 |
0.0238 | 2.8472 | 1850 | 0.0312 |
0.0181 | 2.9242 | 1900 | 0.0326 |
0.0279 | 3.0012 | 1950 | 0.0323 |
0.0106 | 3.0781 | 2000 | 0.0354 |
0.009 | 3.1551 | 2050 | 0.0389 |
0.0071 | 3.2320 | 2100 | 0.0391 |
0.0098 | 3.3090 | 2150 | 0.0385 |
0.0161 | 3.3859 | 2200 | 0.0387 |
0.0094 | 3.4629 | 2250 | 0.0382 |
0.0099 | 3.5398 | 2300 | 0.0385 |
0.0053 | 3.6168 | 2350 | 0.0388 |
0.0122 | 3.6937 | 2400 | 0.0382 |
0.0077 | 3.7707 | 2450 | 0.0386 |
0.0082 | 3.8476 | 2500 | 0.0395 |
0.0122 | 3.9246 | 2550 | 0.0402 |
0.0089 | 4.0015 | 2600 | 0.0408 |
0.002 | 4.0785 | 2650 | 0.0421 |
0.0048 | 4.1554 | 2700 | 0.0447 |
0.0021 | 4.2324 | 2750 | 0.0457 |
0.004 | 4.3093 | 2800 | 0.0463 |
0.0035 | 4.3863 | 2850 | 0.0476 |
0.0046 | 4.4633 | 2900 | 0.0478 |
0.0019 | 4.5402 | 2950 | 0.0476 |
0.0031 | 4.6172 | 3000 | 0.0480 |
0.003 | 4.6941 | 3050 | 0.0478 |
0.002 | 4.7711 | 3100 | 0.0481 |
0.0064 | 4.8480 | 3150 | 0.0481 |
0.0022 | 4.9250 | 3200 | 0.0481 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support