MDM-Prime
MDM-Prime is a discrete diffusion model enhanced with the Partial masking scheme (Prime). It enables fine-grained denoising and improves generation quality across both image and text domains. This model was first proposed in our paper Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking.
Model Details
- Text Generation
- Dataset: openwebtext (OWT)
- Model Size: 131M
- Context Length: 1,024
- Image Synthesis
- Dataset: CIFAR-10, ImageNet-32
- Model Size: 114M
- Context Length: 32x32x3
How to Use
To download the weights, one can download the huggingface_hub library via pip install -U huggingface_hub
and perform the following python code:
from huggingface_hub import hf_hub_download
path = hf_hub_download(
repo_id="chen-hao-chao/mdm-prime",
filename="${checkpoint_name}.pth"
)
Replace ${checkpoint_name}.pth
with ${task}/${dataset}/${setup}/${checkpoint_name}.pth
(e.g., image/imagenet32/results_prime_l8_imagenet32/checkpoint-599.pth
). This repository is organized as follows:
mdm-prime/
βββ README.md
βββ image/
| βββ cifar10/
| βββ imagenet/
| βββ results_mdm_imagenet32/
| βββ results_prime_supertoken_imagenet32/
| βββ results_prime_l2_imagenet32/
| βββ results_prime_l3_imagenet32/
| βββ results_prime_l4_imagenet32/
| βββ results_prime_l6_imagenet32/
| βββ results_prime_l8_imagenet32/
| βββ checkpoint-599.pth
βββ text/
βββ owt/
βββ results_prime_l2_owt/
βββ results_prime_l2_co_owt/
βββ results_prime_l3_owt/
βββ results_prime_l3_co_owt/
βββ results_prime_l4_owt/
βββ results_prime_l4_co_owt/
βββ results_prime_l6_owt/
βββ results_prime_l6_co_owt/
βββ results_prime_l8_owt/
βββ results_prime_l8_co_owt/
βββ checkpoint.ckpt
For more details regarding the training and inference processes, please refer to our github repository: chen-hao-chao/mdm-prime.
Citing MDM-Prime
If you find this code implementation useful, please consider citing our paper.
@article{chao2025mdmprime,
title={{Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking}},
author={Chen-Hao Chao, Wei-Fang Sun, Hanwen Liang, Chun-Yi Lee, Rahul G. Krishnan},
journal={\tt arXiv:2505.18495 [cs.LG]},
year={2025},
}
Model tree for chen-hao-chao/mdm-prime
Base model
kuleshov-group/mdlm-owt