File size: 18,863 Bytes
b8be1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: NIPA personal income includes pension contributions by employers
    in the year income is earned , and benefits paid at retirement are not a component
    of NIPA income .
  sentences:
  - While not the only makeup of income , NIPA is one of the more well known income
    distinctions .
  - Les temples de karnak et de Louxor ont été démolis pour faire place à des projets
    de construction en Cisjordanie .
  - Les restaurants sont tenus à des règles strictes pour contenir leur odeur .
- source_sentence: right right you know the one that 's one reason we bought a house
    here in Plano we were hoping you know well the school district 's gonna be good
    you know for resale value and so on and so forth but
  sentences:
  - We moved to Plano because we thought the school district was good .
  - These and those .
  - L' obsession a suscité une suggestion que tous étaient des boucs émissaires de
    la guerre .
- source_sentence: Dans l' homme invisible , le talentueux dixième narrateur doit
    surmonter non seulement les différentes idéologies qui lui sont présentées comme
    masques ou subversions d' identité , mais aussi les différents rôles et prescriptions
    pour le leadership que sa propre race lui souhaite de réaliser .
  sentences:
  - '" We ''re too uptight now ! " Said Tommy'
  - Le talentueux dixième narrateur doit surmonter les idéologies .
  - Saddam is not taking advantage of the current Arab love towards the United States
- source_sentence: Les lacunes trouvées au cours de la surveillance en cours ou au
    moyen d' évaluations distinctes devraient être communiquées à l' individu responsable
    de la fonction et à au moins un niveau de gestion au-dessus de cet individu .
  sentences:
  - L' économie diminuera également si les conditions du marché changent .
  - The Watergate comparison wasn 't just for Democratic bashing .
  - Il n' y a pas lieu de signaler les lacunes .
- source_sentence: it looks fertile and it it um i mean it rains enough they have
    the climate and the rain and if not it 's like i 've been to Saint Thomas and
    it just starts from the ocean up
  sentences:
  - Il n' a jamais triché .
  - They don 't know how to do it .
  - They have the rain and the climate so I imagine the lands would be fertile .
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: snli dev
      type: snli-dev
    metrics:
    - type: pearson_cosine
      value: 0.3725313255221131
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.3729470854776107
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.3650227128515394
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.37250760289182383
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.36567325497563746
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.37294699995093694
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3725313190046259
      name: Pearson Dot
    - type: spearman_dot
      value: 0.3729474276296007
      name: Spearman Dot
    - type: pearson_max
      value: 0.3725313255221131
      name: Pearson Max
    - type: spearman_max
      value: 0.3729474276296007
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
    "it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
    'They have the rain and the climate so I imagine the lands would be fertile .',
    "They don 't know how to do it .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.3725     |
| spearman_cosine    | 0.3729     |
| pearson_manhattan  | 0.365      |
| spearman_manhattan | 0.3725     |
| pearson_euclidean  | 0.3657     |
| spearman_euclidean | 0.3729     |
| pearson_dot        | 0.3725     |
| spearman_dot       | 0.3729     |
| pearson_max        | 0.3725     |
| **spearman_max**   | **0.3729** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 100,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                        | label                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | float                                                         |
  | details | <ul><li>min: 5 tokens</li><li>mean: 35.27 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.46 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                        | sentence_1                                                             | label            |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------|
  | <code>Natalia M' a regardé .</code>                                                                                                                                               | <code>Natalia a regardé et attend que je lui donne l' épée .</code>    | <code>0.5</code> |
  | <code>And he sounded sincere .</code>                                                                                                                                             | <code>He sounded sincere.He was sounding sincere in his words .</code> | <code>0.0</code> |
  | <code>There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .</code> | <code>The zoo is home to some endangered desert animals .</code>       | <code>0.5</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | snli-dev_spearman_max |
|:------:|:-----:|:-------------:|:---------------------:|
| 0.08   | 500   | 0.2008        | 0.0433                |
| 0.16   | 1000  | 0.1757        | 0.1024                |
| 0.24   | 1500  | 0.1732        | 0.1503                |
| 0.32   | 2000  | 0.1685        | 0.2168                |
| 0.4    | 2500  | 0.1702        | 0.2206                |
| 0.48   | 3000  | 0.1676        | 0.2117                |
| 0.56   | 3500  | 0.1637        | 0.2624                |
| 0.64   | 4000  | 0.1636        | 0.2169                |
| 0.72   | 4500  | 0.1608        | 0.0051                |
| 0.8    | 5000  | 0.1601        | 0.2236                |
| 0.88   | 5500  | 0.1597        | 0.2471                |
| 0.96   | 6000  | 0.1596        | 0.2934                |
| 1.0    | 6250  | -             | 0.2905                |
| 1.04   | 6500  | 0.1602        | 0.3001                |
| 1.12   | 7000  | 0.1571        | 0.3116                |
| 1.2    | 7500  | 0.1588        | 0.3145                |
| 1.28   | 8000  | 0.1562        | 0.3304                |
| 1.3600 | 8500  | 0.1548        | 0.3376                |
| 1.44   | 9000  | 0.156         | 0.3359                |
| 1.52   | 9500  | 0.1552        | 0.3194                |
| 1.6    | 10000 | 0.153         | 0.3474                |
| 1.6800 | 10500 | 0.1529        | 0.3220                |
| 1.76   | 11000 | 0.1518        | 0.3255                |
| 1.8400 | 11500 | 0.1499        | 0.3332                |
| 1.92   | 12000 | 0.1524        | 0.3521                |
| 2.0    | 12500 | 0.1512        | 0.3425                |
| 2.08   | 13000 | 0.1514        | 0.3462                |
| 2.16   | 13500 | 0.1516        | 0.3414                |
| 2.24   | 14000 | 0.1532        | 0.3453                |
| 2.32   | 14500 | 0.1459        | 0.3699                |
| 2.4    | 15000 | 0.1524        | 0.3576                |
| 2.48   | 15500 | 0.1506        | 0.3418                |
| 2.56   | 16000 | 0.1488        | 0.3559                |
| 2.64   | 16500 | 0.1486        | 0.3597                |
| 2.7200 | 17000 | 0.1469        | 0.3552                |
| 2.8    | 17500 | 0.1448        | 0.3459                |
| 2.88   | 18000 | 0.1458        | 0.3503                |
| 2.96   | 18500 | 0.1468        | 0.3647                |
| 3.0    | 18750 | -             | 0.3611                |
| 3.04   | 19000 | 0.1472        | 0.3741                |
| 3.12   | 19500 | 0.1457        | 0.3603                |
| 3.2    | 20000 | 0.147         | 0.3576                |
| 3.2800 | 20500 | 0.1451        | 0.3663                |
| 3.36   | 21000 | 0.1438        | 0.3734                |
| 3.44   | 21500 | 0.1471        | 0.3698                |
| 3.52   | 22000 | 0.1462        | 0.3646                |
| 3.6    | 22500 | 0.1436        | 0.3740                |
| 3.68   | 23000 | 0.1441        | 0.3696                |
| 3.76   | 23500 | 0.1423        | 0.3636                |
| 3.84   | 24000 | 0.1411        | 0.3713                |
| 3.92   | 24500 | 0.1438        | 0.3706                |
| 4.0    | 25000 | 0.1421        | 0.3729                |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->