cherifkhalifah's picture
Finetuned model on SNLI
57af077 verified
metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:100000
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: Two young men playing at a computer.
    sentences:
      - Two boys are competing in a game.
      - A man is sleeping.
      - a boy rides a skateboard near a building
  - source_sentence: >-
      A man with a hat and long gray beard, wearing cross, is holding a napkin
      and striped box.
    sentences:
      - The man is holding an item.
      - The street is dirty.
      - A red boat approaches a river bank.
  - source_sentence: >-
      People clap as a well dressed man and woman walk through a room holding
      hands.
    sentences:
      - A man falls into the water.
      - The crowd claps at the couple holding hands.
      - There is a squirrel that jumps.
  - source_sentence: A man and two boys are filtering water near their campsite in the woods.
    sentences:
      - A man looks for criminal activity in the dark streets.
      - The child was performing a stunt on the bike.
      - The people are filtering water for their camp
  - source_sentence: Many people outside on bicycles.
    sentences:
      - the young man is wearing a black t-shirt modeled after a tuxedo
      - >-
        Protesters are in the back of a photo with a magazine display in the
        foreground.
      - People are riding bikes in a race.
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: snli dev
          type: snli-dev
        metrics:
          - type: pearson_cosine
            value: 0.5041089229469013
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.49624988336246095
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.48476324482316935
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.49567540413897415
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.48548959313285095
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.49624986145166594
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.5041089211722365
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4962498830110755
            name: Spearman Dot
          - type: pearson_max
            value: 0.5041089229469013
            name: Pearson Max
          - type: spearman_max
            value: 0.49624988336246095
            name: Spearman Max

SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L12-v2
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned2-snli-MiniLM-L12-v2")
# Run inference
sentences = [
    'Many people outside on bicycles.',
    'People are riding bikes in a race.',
    'Protesters are in the back of a photo with a magazine display in the foreground.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.5041
spearman_cosine 0.4962
pearson_manhattan 0.4848
spearman_manhattan 0.4957
pearson_euclidean 0.4855
spearman_euclidean 0.4962
pearson_dot 0.5041
spearman_dot 0.4962
pearson_max 0.5041
spearman_max 0.4962

Training Details

Training Dataset

Unnamed Dataset

  • Size: 100,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 7 tokens
    • mean: 16.36 tokens
    • max: 45 tokens
    • min: 4 tokens
    • mean: 10.62 tokens
    • max: 33 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    A mother and two children opening gifts on a Christmas morning. A mother and children cut into a large pizza. 1.0
    Two men in protective gear are in a speed car racing to the finish line. Two boys are playing tag. 1.0
    A person in a pink jacket is running onto the field. The woman is running on to the field. 0.5
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss snli-dev_spearman_max
0.08 500 0.1782 0.3312
0.16 1000 0.1516 0.3393
0.24 1500 0.1422 0.3798
0.32 2000 0.1405 0.3675
0.4 2500 0.137 0.4029
0.48 3000 0.1398 0.3989
0.56 3500 0.136 0.4216
0.64 4000 0.1351 0.4322
0.72 4500 0.1317 0.4223
0.8 5000 0.1293 0.4331
0.88 5500 0.1318 0.4416
0.96 6000 0.1311 0.4185
1.0 6250 - 0.4522
1.04 6500 0.129 0.4312
1.12 7000 0.1272 0.4544
1.2 7500 0.1271 0.4533
1.28 8000 0.125 0.4456
1.3600 8500 0.1229 0.4570
1.44 9000 0.1241 0.4529
1.52 9500 0.1254 0.4517
1.6 10000 0.1232 0.4563
1.6800 10500 0.1232 0.4565
1.76 11000 0.1198 0.4521
1.8400 11500 0.1201 0.4570
1.92 12000 0.1238 0.4758
2.0 12500 0.1195 0.4671
2.08 13000 0.1155 0.4582
2.16 13500 0.1208 0.4787
2.24 14000 0.1164 0.4733
2.32 14500 0.1164 0.4743
2.4 15000 0.1136 0.4733
2.48 15500 0.1177 0.4704
2.56 16000 0.1152 0.4711
2.64 16500 0.1162 0.4827
2.7200 17000 0.1136 0.4772
2.8 17500 0.1129 0.4853
2.88 18000 0.1161 0.4830
2.96 18500 0.1144 0.4827
3.0 18750 - 0.4850
3.04 19000 0.112 0.4920
3.12 19500 0.1105 0.4901
3.2 20000 0.1122 0.4925
3.2800 20500 0.1114 0.4913
3.36 21000 0.1074 0.4887
3.44 21500 0.1093 0.4819
3.52 22000 0.1107 0.4853
3.6 22500 0.1088 0.4897
3.68 23000 0.1095 0.4922
3.76 23500 0.11 0.4923
3.84 24000 0.1075 0.4950
3.92 24500 0.1107 0.4967
4.0 25000 0.1073 0.4962

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}