choiruzzia's picture
Training fold 3
686bd6b verified
---
license: mit
base_model: ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 22best_berita_roberta_model_fold_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>]()
# 22best_berita_roberta_model_fold_3
This model is a fine-tuned version of [ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa](https://huggingface.co/ayameRushia/roberta-base-indonesian-sentiment-analysis-smsa) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9238
- Accuracy: 0.8815
- Precision: 0.8816
- Recall: 0.8882
- F1: 0.8802
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 1.0 | 106 | 0.4861 | 0.8009 | 0.8185 | 0.7929 | 0.7946 |
| No log | 2.0 | 212 | 0.6104 | 0.7820 | 0.8077 | 0.7810 | 0.7751 |
| No log | 3.0 | 318 | 0.6139 | 0.8246 | 0.8276 | 0.8147 | 0.8144 |
| No log | 4.0 | 424 | 1.1299 | 0.8294 | 0.8478 | 0.8432 | 0.8281 |
| 0.4919 | 5.0 | 530 | 0.9623 | 0.8531 | 0.8547 | 0.8608 | 0.8511 |
| 0.4919 | 6.0 | 636 | 0.8674 | 0.8768 | 0.8771 | 0.8825 | 0.8750 |
| 0.4919 | 7.0 | 742 | 0.9238 | 0.8815 | 0.8816 | 0.8882 | 0.8802 |
| 0.4919 | 8.0 | 848 | 0.9191 | 0.8673 | 0.8658 | 0.8712 | 0.8649 |
| 0.4919 | 9.0 | 954 | 1.0218 | 0.8673 | 0.8681 | 0.8712 | 0.8647 |
| 0.0165 | 10.0 | 1060 | 1.0294 | 0.8720 | 0.8725 | 0.8769 | 0.8699 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1