chqmatteo commited on
Commit
33167e0
·
1 Parent(s): e732eac
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 259.53 +/- 21.52
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 293.49 +/- 23.37
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00f15c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00f15c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00f15c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00f15c700>", "_build": "<function ActorCriticPolicy._build at 0x7fc00f15c790>", "forward": "<function ActorCriticPolicy.forward at 0x7fc00f15c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00f15c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc00f15c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00f15c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00f15ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00f15caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc00f4d4640>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673376901272436431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbfkjxAibE/PEGyPknqh77BGJa7njHhPAAAAAAAAAAABhArPhz0cT14OLe9sjM5vqdstTw+Djc8AAAAAAAAAABNG0I+g6B8PYzYML6vbse9FmS+Oql9mTkAAAAAAAAAAIaAM77saWc+Lj6IPVFJZL7f+1u9GbawPQAAAAAAAAAAJto8Pq7upryaZxY4NT9LtThBEr4dfkC3AACAPwAAgD8Gvza+Q34KvAaxjju8VT05Xu1mPUUnqboAAIA/AACAP5pjCbxsr6K71ogLPc0e5bwUdsy8rjv8vQAAgD8AAIA/86aLvYlRnz9gr6C+sF8ev3CHy72+t/K9AAAAAAAAAADNlLM8rcCePxarAT67vyi/X+unPKabHz0AAAAAAAAAAIMDkr4Fchk/TICIu3t83r41sRK+6ocOPgAAAAAAAAAAYOgFPib+nT/W9P0+lH0Zvxud4D2rzbw9AAAAAAAAAADNuFw+s5xdP7yJyz2sUAG/JN8EPjYBTL0AAAAAAAAAANNeGL7cg1a8BSp/u9GRE7osd7g9/rz9OgAAgD8AAIA/QI8HPszznT9q5gk/OecXv/TlDD4HVz0+AAAAAAAAAACmrGQ+HcB2P39jpj70EAG/g+9GPpeworsAAAAAAAAAALODFb5wOaE/2lYFv5r7Er936k++4OY5vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8rOR66a7b0CUhpRSlIwBbJRL/IwBdJRHQOMNx3Ah0Qt1fZQoaAZoCWgPQwgP1CmPrg9wQJSGlFKUaBVLymgWR0DjDcfu1ndwdX2UKGgGaAloD0MI21Axzl+QbkCUhpRSlGgVS/RoFkdA4w3NLYf4h3V9lChoBmgJaA9DCBGLGHYYT2NAlIaUUpRoFU3oA2gWR0DjDdlQBPsSdX2UKGgGaAloD0MIvHg/bn+ocECUhpRSlGgVTR0BaBZHQOMN3g1He8B1fZQoaAZoCWgPQwg5e2e0Ve5vQJSGlFKUaBVL72gWR0DjDd/9DQZ5dX2UKGgGaAloD0MIXB/WG7W4ZkCUhpRSlGgVTegDaBZHQOMR9zxqfvp1fZQoaAZoCWgPQwjeA3RfTiVxQJSGlFKUaBVLyGgWR0DjEfd+uvECdX2UKGgGaAloD0MIoGzKFV5nbUCUhpRSlGgVS+RoFkdA4xH7rl3hXXV9lChoBmgJaA9DCPcBSG1iRGxAlIaUUpRoFUvaaBZHQOMSBTK/2011fZQoaAZoCWgPQwgM5xpmaMRrQJSGlFKUaBVN6QJoFkdA4xIGjyOJcnV9lChoBmgJaA9DCIoCfSJP429AlIaUUpRoFUvjaBZHQOMSB2n889x1fZQoaAZoCWgPQwgMdy6M9INhQJSGlFKUaBVN6ANoFkdA4xIJYUWVNnV9lChoBmgJaA9DCF5nQ/7ZHnFAlIaUUpRoFUvkaBZHQOMSCtNDc/N1fZQoaAZoCWgPQwj2QCsw5C9xQJSGlFKUaBVL2GgWR0DjEgxVyWAxdX2UKGgGaAloD0MIuAN1yiNycECUhpRSlGgVTaMBaBZHQOMSFQ6hg3N1fZQoaAZoCWgPQwjPEI5Z9thsQJSGlFKUaBVNKwFoFkdA4xIYrE9+w3V9lChoBmgJaA9DCPc8f9qopG5AlIaUUpRoFUvZaBZHQOMSGnvfCQ91fZQoaAZoCWgPQwjOFhBaD41bQJSGlFKUaBVN6ANoFkdA4xIgzZxrBXV9lChoBmgJaA9DCMcQABz7zXFAlIaUUpRoFUv/aBZHQOMSIQfdRBN1fZQoaAZoCWgPQwhr1EM0urpyQJSGlFKUaBVL5mgWR0DjEi7Q2uPndX2UKGgGaAloD0MIERjrG5gAY0CUhpRSlGgVTegDaBZHQOMSM0p1A7h1fZQoaAZoCWgPQwgOL4hIDYVwQJSGlFKUaBVL3mgWR0DjEjcvN/vwdX2UKGgGaAloD0MIegCL/PoOcUCUhpRSlGgVS95oFkdA4xI5SWJJoXV9lChoBmgJaA9DCJZa7zdapm1AlIaUUpRoFUvdaBZHQOMSOmcjJMh1fZQoaAZoCWgPQwjScMrc/F9uQJSGlFKUaBVL7WgWR0DjEjvVbRnfdX2UKGgGaAloD0MIJqYLsfpxckCUhpRSlGgVS+BoFkdA4xI8gDifhHV9lChoBmgJaA9DCEWhZd2/w3BAlIaUUpRoFUvqaBZHQOMSQDM7lq91fZQoaAZoCWgPQwjkFYielGVvQJSGlFKUaBVL8mgWR0DjEk3+hoM8dX2UKGgGaAloD0MIcxJKXwg0cUCUhpRSlGgVTQYBaBZHQOMSV55HEuR1fZQoaAZoCWgPQwiNYOP6d/5vQJSGlFKUaBVL2mgWR0DjEmaXk5p8dX2UKGgGaAloD0MIGO5cGOlhcECUhpRSlGgVS+loFkdA4xJwYao/A3V9lChoBmgJaA9DCLwjY7X5v3BAlIaUUpRoFUvbaBZHQOMSdqEi+td1fZQoaAZoCWgPQwg8wf7rXCRvQJSGlFKUaBVL82gWR0DjEnejNY8udX2UKGgGaAloD0MIDvYmhmTBckCUhpRSlGgVS9BoFkdA4xJ5tGmUGHV9lChoBmgJaA9DCIejq3T3L3BAlIaUUpRoFUv0aBZHQOMSfBlar3l1fZQoaAZoCWgPQwjQCaGD7i1wQJSGlFKUaBVNFwFoFkdA4xKHamwaBXV9lChoBmgJaA9DCAcHexMDvXBAlIaUUpRoFU2WAWgWR0DjEoq0Xxe+dX2UKGgGaAloD0MICTNt/wohcECUhpRSlGgVS+ZoFkdA4xKMvboKUnV9lChoBmgJaA9DCHPbvkf9BnJAlIaUUpRoFUv3aBZHQOMSm7K3d9F1fZQoaAZoCWgPQwgTfxR1ph9xQJSGlFKUaBVL4GgWR0DjEqRpsXSCdX2UKGgGaAloD0MIzY+/tOhncECUhpRSlGgVS+5oFkdA4xK5TzundnV9lChoBmgJaA9DCIFDqFLzqHJAlIaUUpRoFU0dAWgWR0DjEr8qUeMidX2UKGgGaAloD0MISwSqfxA+ckCUhpRSlGgVS/VoFkdA4xK/LsjVx3V9lChoBmgJaA9DCNl6hnDMZG9AlIaUUpRoFUvgaBZHQOMSycKZ2IR1fZQoaAZoCWgPQwjMRBFS9wpyQJSGlFKUaBVL2mgWR0DjEsppBX0YdX2UKGgGaAloD0MIRKfn3VgycECUhpRSlGgVS/doFkdA4xLNLXDm83V9lChoBmgJaA9DCFKeeTlsv3FAlIaUUpRoFUvvaBZHQOMS4Vi2Dxt1fZQoaAZoCWgPQwiKcmn8QphkQJSGlFKUaBVN6ANoFkdA4xLneF10T3V9lChoBmgJaA9DCPGcLSC0KG5AlIaUUpRoFUvjaBZHQOMS596NVBF1fZQoaAZoCWgPQwhhU+dRMYJwQJSGlFKUaBVLzGgWR0DjEvY8dxQ0dX2UKGgGaAloD0MIg4WTNH8tYUCUhpRSlGgVTegDaBZHQOMTAAqTbFl1fZQoaAZoCWgPQwi1FfvL7rFkQJSGlFKUaBVN6ANoFkdA4xMAVgH/tXV9lChoBmgJaA9DCCiZnNqZ3HBAlIaUUpRoFUvfaBZHQOMTApxaPjp1fZQoaAZoCWgPQwiC4seYe+1xQJSGlFKUaBVL42gWR0DjEw7zOopAdX2UKGgGaAloD0MIEynN5vEtcECUhpRSlGgVS/BoFkdA4xMSGpEQXnV9lChoBmgJaA9DCCB7vfvj+3BAlIaUUpRoFUvJaBZHQOMTI4IjW091fZQoaAZoCWgPQwjC3sSQHKpjQJSGlFKUaBVN6ANoFkdA4xMv4L9deXV9lChoBmgJaA9DCIFZoUi333JAlIaUUpRoFUvyaBZHQOMTL+Zof0V1fZQoaAZoCWgPQwgiGt1BbOxjQJSGlFKUaBVN6ANoFkdA4xM4lB6a9nV9lChoBmgJaA9DCOxq8pTVs3BAlIaUUpRoFUvmaBZHQOMTOpxcVxl1fZQoaAZoCWgPQwiKraBpCcFwQJSGlFKUaBVL02gWR0DjE0A9GI9DdX2UKGgGaAloD0MI7//jhAkpckCUhpRSlGgVS/xoFkdA4xNJW+fyw3V9lChoBmgJaA9DCPOtD+uNNHJAlIaUUpRoFUvtaBZHQOMTUuvhZQp1fZQoaAZoCWgPQwgllSnmoEZkQJSGlFKUaBVN6ANoFkdA4xNUTmnwX3V9lChoBmgJaA9DCOZ4BaKnFHBAlIaUUpRoFU0OAWgWR0DjE164sEq2dX2UKGgGaAloD0MINlfNcwRGcECUhpRSlGgVS9xoFkdA4xNhU1IiDHV9lChoBmgJaA9DCFVQUfUrVnJAlIaUUpRoFUvjaBZHQOMTbz3bmEJ1fZQoaAZoCWgPQwjUDRR459pyQJSGlFKUaBVLzGgWR0DjE3GEoOQRdX2UKGgGaAloD0MIUAEwngEZcECUhpRSlGgVTQkBaBZHQOMTemMS9M91fZQoaAZoCWgPQwig4GJFDbZvQJSGlFKUaBVL9GgWR0DjE4WjbBXTdX2UKGgGaAloD0MIz6Pi/444NECUhpRSlGgVS2RoFkdA4xOPH1Fpf3V9lChoBmgJaA9DCLIQHQJHGnBAlIaUUpRoFUvdaBZHQOMTkoFC9h91fZQoaAZoCWgPQwhqwvaTsWxiQJSGlFKUaBVN6ANoFkdA4xOW5IYm9nV9lChoBmgJaA9DCJRQ+kJI9WBAlIaUUpRoFU3oA2gWR0DjE5mm8/UwdX2UKGgGaAloD0MIWWlSCrqEb0CUhpRSlGgVS+NoFkdA4xOgzJhfB3V9lChoBmgJaA9DCDxqTIj5h3FAlIaUUpRoFUvuaBZHQOMTs6+SKWN1fZQoaAZoCWgPQwhHHR1XI3ZsQJSGlFKUaBVL7WgWR0DjE72TxG2DdX2UKGgGaAloD0MIn8coz/yickCUhpRSlGgVTdIBaBZHQOMTvhU96kZ1fZQoaAZoCWgPQwi7l/vkaE5yQJSGlFKUaBVNbgFoFkdA4xPJzsY2sXV9lChoBmgJaA9DCINuL2nMoHBAlIaUUpRoFUvpaBZHQOMT0M43m3h1fZQoaAZoCWgPQwiGHFvPEL9vQJSGlFKUaBVL3mgWR0DjE9EPikwfdX2UKGgGaAloD0MIvFmD99VvbkCUhpRSlGgVS99oFkdA4xPXe/gzg3V9lChoBmgJaA9DCJxrmKGxuHBAlIaUUpRoFU0lAWgWR0DjE9fzU7SzdX2UKGgGaAloD0MIh9wMN2CvbECUhpRSlGgVTQcBaBZHQOMT3ze2uxN1fZQoaAZoCWgPQwjQX+gRo+tgQJSGlFKUaBVN6ANoFkdA4xPfOYIBzXV9lChoBmgJaA9DCHhEhepm83BAlIaUUpRoFUvnaBZHQOMT4CmsNlR1fZQoaAZoCWgPQwiqfxDJEDViQJSGlFKUaBVN6ANoFkdA4xPruQp4KXV9lChoBmgJaA9DCIWVCioqWnFAlIaUUpRoFUvWaBZHQOMT7Z/5Lyt1fZQoaAZoCWgPQwhgOUIGMjJwQJSGlFKUaBVLy2gWR0DjE/RrMTvidX2UKGgGaAloD0MIaY1BJwQjYkCUhpRSlGgVTegDaBZHQOMT/dG0/np1fZQoaAZoCWgPQwghsHJoEX5uQJSGlFKUaBVL1WgWR0DjFAnUMoc8dX2UKGgGaAloD0MI7ginBe/8cECUhpRSlGgVS9toFkdA4xQLB4t6HHV9lChoBmgJaA9DCASNmUQ9im5AlIaUUpRoFUvhaBZHQOMUE5YzSCx1fZQoaAZoCWgPQwjLZaNz/hJvQJSGlFKUaBVNTAFoFkdA4xQYhpHqeXV9lChoBmgJaA9DCPAXsyXrVHJAlIaUUpRoFUvSaBZHQOMUGPdGiHt1fZQoaAZoCWgPQwiSIFwBhXZdQJSGlFKUaBVN6ANoFkdA4xQZkzXSSnV9lChoBmgJaA9DCGOcvwkFgHJAlIaUUpRoFUv2aBZHQOMUGfbAUL51fZQoaAZoCWgPQwg+rg0VI4NwQJSGlFKUaBVL32gWR0DjFBuzposadX2UKGgGaAloD0MIfUCgM6micUCUhpRSlGgVS+loFkdA4xQeDPnjhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7deb5d7e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7deb5d7ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7deb5d7f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7deb5d6040>", "_build": "<function ActorCriticPolicy._build at 0x7f7deb5d60d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7deb5d6160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7deb5d61f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7deb5d6280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7deb5d6310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7deb5d63a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7deb5d6430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7deb5d9100>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673382900046566507, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJrjBbxCBE8/NrPnPFHfdb8Wfwq9ohY3ugAAAAAAAAAAM54HPdwFFLwtRws7Zy/KPLnwUL0qAZo4AACAPwAAgD8zkUI94VqKuqjmWzirqLcxvKQru5YLfLcAAIA/AACAP5oHQj2C4bk/LhNCPo4qW75tmTc9Xh3GPQAAAAAAAAAAM5Mluz1qa7tD0G68GzWOPG71t7wD53M9AACAPwAAgD+a56I9js/gPcBCnb57UgG/jwvePMJbSr4AAAAAAAAAAM2Lmb1vhbs/R86qvkwZHL7tkMy9E+wsvgAAAAAAAAAAM1YNvc/3dj19LIw+6+a3vsM18z0BCkk+AAAAAAAAAACaAck7ks7wPPZmcb1jL7++IBuTPbY+rrwAAAAAAAAAAFr9q71tb6k/n5Krvsyv7L4xEiC+BexovgAAAAAAAAAAzTCmu1zjMboaQx+1mmC7Ls2bpzo+31o0AACAPwAAgD9mqHe9mhINPpAKSD5PEtu+EybZunm9Bz4AAAAAAAAAADMbJDzh6K26iy4aM3Mbm7AmRwe6NgjHswAAgD8AAIA/5scGPUgdmrqQwDA03mqmrvruAzuAoo2zAACAPwAAgD/NCMM84cyHut7MELzco1K2j7KROgXLvTUAAIA/AAAAAABQ1Lv2cBG6+ytOM9o7sa8bwag7KaS7swAAgD8AAIA/QEYBvvSLMT42wvI+zSrZvugowT2xJqo+AAAAAAAAAADN5CY+YARIP0DJ2z02USu/LcKyPjjCAz0AAAAAAAAAAGa4CD6PLMg+IDyPvjrRH7+KwAo+ttkrvgAAAAAAAAAAM8s9u1nAsD9U/ce9YGzxvockWTu5ObM8AAAAAAAAAADazZu93FQlvKH4NT1cZI499L2LPKtu2DsAAIA/AACAP3NREr7H0Fk+RdTzPnLS9L4rX8k9po6KPgAAAAAAAAAAjZToPQyHkj5EEh++LuYUv1hMLD4ECQa+AAAAAAAAAADNPJM7UoC9u316ZLty0gk9npYNPSu7470AAIA/AACAP2YS+LykoiO741dVPGlOhTy5aXm88HVnPQAAgD8AAIA/s84YPcP4CD3YN369Tw7KvseQmbwfaBC9AAAAAAAAAAAAIyM9m4iavBw+AL4HyXI9S2YnvaciFboAAIA/AACAP7P7iz1FvOQ833rCvo4u2L7xGam9niSBvgAAAAAAAAAAzfnVPKReuT1mDUO+m0XKvit8bTxwNu29AAAAAAAAAACabx89nBqmP4r55D7Z3ji/kuCCPEU/Qj4AAAAAAAAAAEYHU75kZM0+wMSYPk26Ob+g5Ga+51GHPgAAAAAAAAAAZqBfPV7stD+PLyc/SvSgvS2tJ7wmY8g9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWkV/aOYickCUhpRSlIwBbJRLsYwBdJRHQLa5RpMYdhl1fZQoaAZoCWgPQwg0LbEy2mtyQJSGlFKUaBVLrmgWR0C2uVM/UvwmdX2UKGgGaAloD0MIbjXrjG9rcUCUhpRSlGgVS6poFkdAtrlWhlDneXV9lChoBmgJaA9DCFch5SfVJ3NAlIaUUpRoFUvEaBZHQLa5Xu5z5oJ1fZQoaAZoCWgPQwhiD+1jBd9yQJSGlFKUaBVLo2gWR0C2uWctbs4UdX2UKGgGaAloD0MITyLCvwijb0CUhpRSlGgVS6doFkdAtrlqEqUeMnV9lChoBmgJaA9DCAUx0LUv9HFAlIaUUpRoFUuuaBZHQLa5eF4LThJ1fZQoaAZoCWgPQwgo1xTI7OFvQJSGlFKUaBVLmGgWR0C2uZJXuE26dX2UKGgGaAloD0MIdGIP7WODR0CUhpRSlGgVS2JoFkdAtrmUYdhiLHV9lChoBmgJaA9DCGOARBOoonFAlIaUUpRoFUugaBZHQLa5m79ycTd1fZQoaAZoCWgPQwgydy0hX91xQJSGlFKUaBVLm2gWR0C2uaRUm2LHdX2UKGgGaAloD0MIJ4QOukR4ckCUhpRSlGgVS7hoFkdAtrmlGc4HX3V9lChoBmgJaA9DCLQh/8xgjHJAlIaUUpRoFUu/aBZHQLa5uSaEzwd1fZQoaAZoCWgPQwh/vFetDJdyQJSGlFKUaBVLu2gWR0C2ubkbT+efdX2UKGgGaAloD0MIUDi7tUyycECUhpRSlGgVS5poFkdAtrnMZ3s5XHV9lChoBmgJaA9DCGFT51HxQHJAlIaUUpRoFUuZaBZHQLa5z1P3ztl1fZQoaAZoCWgPQwjM0HgiyH1yQJSGlFKUaBVLvWgWR0C2uc9D+irUdX2UKGgGaAloD0MI6uxkcNTBcUCUhpRSlGgVS7JoFkdAtrnOaH9FWnV9lChoBmgJaA9DCCIAOPasNnBAlIaUUpRoFUu2aBZHQLa50BiTdLx1fZQoaAZoCWgPQwgJh97iYYNwQJSGlFKUaBVLnWgWR0C2ueQ0waisdX2UKGgGaAloD0MIfGDHfwFBc0CUhpRSlGgVS9doFkdAtrnk3l0YCXV9lChoBmgJaA9DCLN8XYb/R29AlIaUUpRoFUugaBZHQLa57g2ZRbd1fZQoaAZoCWgPQwhmMhzP5wlvQJSGlFKUaBVLoWgWR0C2ue3CwbEQdX2UKGgGaAloD0MINpIE4UqwcECUhpRSlGgVS69oFkdAtrnwYaYNRXV9lChoBmgJaA9DCI1g4/p3J3JAlIaUUpRoFUuiaBZHQLa59RWcSXd1fZQoaAZoCWgPQwhdpbvr7LhxQJSGlFKUaBVLlmgWR0C2ufT7di2EdX2UKGgGaAloD0MIFygpsMDPckCUhpRSlGgVS6hoFkdAtroDiZOSGXV9lChoBmgJaA9DCJ2BkZe1X3JAlIaUUpRoFUuPaBZHQLa6GCbc45t1fZQoaAZoCWgPQwgTgH9KlRZyQJSGlFKUaBVLzmgWR0C2uh3/5tWNdX2UKGgGaAloD0MIXMr5Ym/2ckCUhpRSlGgVS7FoFkdAtrop/hESd3V9lChoBmgJaA9DCJQvaCEBCnNAlIaUUpRoFUu6aBZHQLa6MfQKKHh1fZQoaAZoCWgPQwgeGavN/1t0QJSGlFKUaBVL/GgWR0C2uju6Ae7udX2UKGgGaAloD0MI6E8b1emCcECUhpRSlGgVS7ZoFkdAtrpV3B55aHV9lChoBmgJaA9DCHiZYaMsj3NAlIaUUpRoFUu2aBZHQLa6Zfq5byJ1fZQoaAZoCWgPQwhl48EW+5pxQJSGlFKUaBVLq2gWR0C2umlJ+UhWdX2UKGgGaAloD0MITKWfcLbtcECUhpRSlGgVS7RoFkdAtrprr0J4S3V9lChoBmgJaA9DCFclkX1QTnJAlIaUUpRoFUu9aBZHQLa6bW7voeR1fZQoaAZoCWgPQwgrEhPU8ONzQJSGlFKUaBVLwWgWR0C2uofyTY/WdX2UKGgGaAloD0MIrDjVWhj0b0CUhpRSlGgVS6NoFkdAtrqXDFZPmHV9lChoBmgJaA9DCONuEK0VPnJAlIaUUpRoFUvDaBZHQLa6m9MsYl91fZQoaAZoCWgPQwhqpRDIpRZzQJSGlFKUaBVLrGgWR0C2uqZBkZrIdX2UKGgGaAloD0MIICkiw6o5cUCUhpRSlGgVS6JoFkdAtrqso/iYLXV9lChoBmgJaA9DCKhXyjKEwnNAlIaUUpRoFUu/aBZHQLa6s6d1+y91fZQoaAZoCWgPQwiBfAkVXCZyQJSGlFKUaBVLvmgWR0C2urtc0LtvdX2UKGgGaAloD0MIe0s5X2z2cECUhpRSlGgVS6doFkdAtrrMnBtUGXV9lChoBmgJaA9DCJm36joUY3BAlIaUUpRoFUu0aBZHQLa65G7z06J1fZQoaAZoCWgPQwhDrtSzoFxyQJSGlFKUaBVL32gWR0C2uugK8cuKdX2UKGgGaAloD0MIIHpSJjVKc0CUhpRSlGgVS7doFkdAtrrore67NHV9lChoBmgJaA9DCJxpwvZTVXJAlIaUUpRoFUu6aBZHQLa67m5Dqnp1fZQoaAZoCWgPQwgeGED4EEtwQJSGlFKUaBVLrGgWR0C2uu3HmzSkdX2UKGgGaAloD0MIZDvfT00lcECUhpRSlGgVS65oFkdAtrrwHlfZ3HV9lChoBmgJaA9DCNi7P94rEnNAlIaUUpRoFUupaBZHQLa68tUGVzJ1fZQoaAZoCWgPQwjq6SPwhzBxQJSGlFKUaBVLrGgWR0C2uvfBSDRMdX2UKGgGaAloD0MIghq+hXXrckCUhpRSlGgVS89oFkdAtrr4bLlmvnV9lChoBmgJaA9DCAG/RpJgg3NAlIaUUpRoFUvFaBZHQLa6/6UaAFx1fZQoaAZoCWgPQwjn/BTHgSdwQJSGlFKUaBVLuGgWR0C2uw/TLGJfdX2UKGgGaAloD0MIWHGqtbBeckCUhpRSlGgVS7FoFkdAtrsUuAZsK3V9lChoBmgJaA9DCCY0SSzplHBAlIaUUpRoFUuqaBZHQLa7HUcn3L51fZQoaAZoCWgPQwhfCg+aHR5xQJSGlFKUaBVLxWgWR0C2uyH/1g6VdX2UKGgGaAloD0MIyQG7mnwGc0CUhpRSlGgVS8xoFkdAtrsnp1RtQHV9lChoBmgJaA9DCEHYKVYNJ29AlIaUUpRoFUucaBZHQLa7LREF4cF1fZQoaAZoCWgPQwiVYdwNYjdzQJSGlFKUaBVLtGgWR0C2u0Z9E1EWdX2UKGgGaAloD0MIyXTo9HwxcUCUhpRSlGgVS5VoFkdAtrtTkMkQgHV9lChoBmgJaA9DCJQXmYDf1HFAlIaUUpRoFUufaBZHQLa7X5eqrBF1fZQoaAZoCWgPQwh72AsFrEdyQJSGlFKUaBVLymgWR0C2u2CdWhh6dX2UKGgGaAloD0MIWDofnuVxcUCUhpRSlGgVS6xoFkdAtrt21+iJwnV9lChoBmgJaA9DCGNBYVCmlTRAlIaUUpRoFUtoaBZHQLa7hnmJWNp1fZQoaAZoCWgPQwhFSrN5nCtzQJSGlFKUaBVLvmgWR0C2u4+NcW0rdX2UKGgGaAloD0MI4jycwPRicECUhpRSlGgVS8poFkdAtruR3mmtQ3V9lChoBmgJaA9DCB+7C5RUB3NAlIaUUpRoFUukaBZHQLa7n/4ZdfN1fZQoaAZoCWgPQwhzSGqhpARyQJSGlFKUaBVLtmgWR0C2u6fszEaVdX2UKGgGaAloD0MIiBOYTmvdckCUhpRSlGgVS6ZoFkdAtruudH2AXnV9lChoBmgJaA9DCOT09XzNbHFAlIaUUpRoFUu2aBZHQLa7uLUCq6x1fZQoaAZoCWgPQwgpIy4ATZFyQJSGlFKUaBVLxGgWR0C2u+cJQcghdX2UKGgGaAloD0MIQrXBiWisc0CUhpRSlGgVS8VoFkdAtrvxG8VYZHV9lChoBmgJaA9DCI/hsZ9FBXBAlIaUUpRoFUumaBZHQLa7+hwEQoV1fZQoaAZoCWgPQwgTLXk8LflyQJSGlFKUaBVLxmgWR0C2u/tDIBBBdX2UKGgGaAloD0MIeXk6V9SlckCUhpRSlGgVS7BoFkdAtrv/xaxHG3V9lChoBmgJaA9DCFtbeF7qb3JAlIaUUpRoFUuraBZHQLa8AKaG5+Z1fZQoaAZoCWgPQwjb+1QV2rVzQJSGlFKUaBVLsmgWR0C2vA0G/vfCdX2UKGgGaAloD0MIlUc3wmJqc0CUhpRSlGgVS8ZoFkdAtrwMPlMh5nV9lChoBmgJaA9DCPDAAMIHmW9AlIaUUpRoFUupaBZHQLa8EWiUPhB1fZQoaAZoCWgPQwjBxvXvuq1wQJSGlFKUaBVLnmgWR0C2vBebRWtEdX2UKGgGaAloD0MIBb8NMR7qcUCUhpRSlGgVS6hoFkdAtrwiDjBEa3V9lChoBmgJaA9DCPPlBdjH9XFAlIaUUpRoFUvCaBZHQLa8IWN3np11fZQoaAZoCWgPQwg75dGNsEFzQJSGlFKUaBVLvmgWR0C2vCTZlFtsdX2UKGgGaAloD0MIaf6Y1iahc0CUhpRSlGgVS6JoFkdAtrwsihWYGHV9lChoBmgJaA9DCDzZzYy+iHJAlIaUUpRoFUvHaBZHQLa8N8pCrtF1fZQoaAZoCWgPQwiWWYRi68RxQJSGlFKUaBVLymgWR0C2vD3Q6ZH/dX2UKGgGaAloD0MI0QMfg5W5cUCUhpRSlGgVS6hoFkdAtrw9khA4XHV9lChoBmgJaA9DCEfjUL/LKXRAlIaUUpRoFUuuaBZHQLa8TcEeQuF1fZQoaAZoCWgPQwh4YtaLIdRyQJSGlFKUaBVLo2gWR0C2vFdnK4hEdX2UKGgGaAloD0MIPtAKDFnkckCUhpRSlGgVS9loFkdAtrx/z5GjK3V9lChoBmgJaA9DCD2CGylbfnFAlIaUUpRoFUu1aBZHQLa8i/Rmbsp1fZQoaAZoCWgPQwgpXmVtUyxxQJSGlFKUaBVLrmgWR0C2vKhtP558dX2UKGgGaAloD0MIS6shcc9JdECUhpRSlGgVS8VoFkdAtryoRGtp23V9lChoBmgJaA9DCIquCz94CXNAlIaUUpRoFUvPaBZHQLa8q9cKPXF1fZQoaAZoCWgPQwiU+NwJtilzQJSGlFKUaBVLpWgWR0C2vMDqv/zbdX2UKGgGaAloD0MIfEPhs7WOc0CUhpRSlGgVS7doFkdAtrzA95hScnV9lChoBmgJaA9DCGGNs+lIj3FAlIaUUpRoFUuuaBZHQLa8yc7Qswt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
lunar-noob.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c57be1b3a5a0687639786304f2a3d330b01f8ac0274acfc84ed6c6f91609696
3
- size 147318
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bf19618ebcff268dd7446361d27adbf83f283977a7c66e1b6d6031f7e0300d9
3
+ size 148107
lunar-noob/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00f15c550>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00f15c5e0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00f15c670>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00f15c700>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fc00f15c790>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fc00f15c820>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00f15c8b0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fc00f15c940>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00f15c9d0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00f15ca60>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00f15caf0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc._abc_data object at 0x7fc00f4d4640>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -41,13 +41,13 @@
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
- "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1673376901272436431,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,34 +56,34 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbfkjxAibE/PEGyPknqh77BGJa7njHhPAAAAAAAAAAABhArPhz0cT14OLe9sjM5vqdstTw+Djc8AAAAAAAAAABNG0I+g6B8PYzYML6vbse9FmS+Oql9mTkAAAAAAAAAAIaAM77saWc+Lj6IPVFJZL7f+1u9GbawPQAAAAAAAAAAJto8Pq7upryaZxY4NT9LtThBEr4dfkC3AACAPwAAgD8Gvza+Q34KvAaxjju8VT05Xu1mPUUnqboAAIA/AACAP5pjCbxsr6K71ogLPc0e5bwUdsy8rjv8vQAAgD8AAIA/86aLvYlRnz9gr6C+sF8ev3CHy72+t/K9AAAAAAAAAADNlLM8rcCePxarAT67vyi/X+unPKabHz0AAAAAAAAAAIMDkr4Fchk/TICIu3t83r41sRK+6ocOPgAAAAAAAAAAYOgFPib+nT/W9P0+lH0Zvxud4D2rzbw9AAAAAAAAAADNuFw+s5xdP7yJyz2sUAG/JN8EPjYBTL0AAAAAAAAAANNeGL7cg1a8BSp/u9GRE7osd7g9/rz9OgAAgD8AAIA/QI8HPszznT9q5gk/OecXv/TlDD4HVz0+AAAAAAAAAACmrGQ+HcB2P39jpj70EAG/g+9GPpeworsAAAAAAAAAALODFb5wOaE/2lYFv5r7Er936k++4OY5vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8rOR66a7b0CUhpRSlIwBbJRL/IwBdJRHQOMNx3Ah0Qt1fZQoaAZoCWgPQwgP1CmPrg9wQJSGlFKUaBVLymgWR0DjDcfu1ndwdX2UKGgGaAloD0MI21Axzl+QbkCUhpRSlGgVS/RoFkdA4w3NLYf4h3V9lChoBmgJaA9DCBGLGHYYT2NAlIaUUpRoFU3oA2gWR0DjDdlQBPsSdX2UKGgGaAloD0MIvHg/bn+ocECUhpRSlGgVTR0BaBZHQOMN3g1He8B1fZQoaAZoCWgPQwg5e2e0Ve5vQJSGlFKUaBVL72gWR0DjDd/9DQZ5dX2UKGgGaAloD0MIXB/WG7W4ZkCUhpRSlGgVTegDaBZHQOMR9zxqfvp1fZQoaAZoCWgPQwjeA3RfTiVxQJSGlFKUaBVLyGgWR0DjEfd+uvECdX2UKGgGaAloD0MIoGzKFV5nbUCUhpRSlGgVS+RoFkdA4xH7rl3hXXV9lChoBmgJaA9DCPcBSG1iRGxAlIaUUpRoFUvaaBZHQOMSBTK/2011fZQoaAZoCWgPQwgM5xpmaMRrQJSGlFKUaBVN6QJoFkdA4xIGjyOJcnV9lChoBmgJaA9DCIoCfSJP429AlIaUUpRoFUvjaBZHQOMSB2n889x1fZQoaAZoCWgPQwgMdy6M9INhQJSGlFKUaBVN6ANoFkdA4xIJYUWVNnV9lChoBmgJaA9DCF5nQ/7ZHnFAlIaUUpRoFUvkaBZHQOMSCtNDc/N1fZQoaAZoCWgPQwj2QCsw5C9xQJSGlFKUaBVL2GgWR0DjEgxVyWAxdX2UKGgGaAloD0MIuAN1yiNycECUhpRSlGgVTaMBaBZHQOMSFQ6hg3N1fZQoaAZoCWgPQwjPEI5Z9thsQJSGlFKUaBVNKwFoFkdA4xIYrE9+w3V9lChoBmgJaA9DCPc8f9qopG5AlIaUUpRoFUvZaBZHQOMSGnvfCQ91fZQoaAZoCWgPQwjOFhBaD41bQJSGlFKUaBVN6ANoFkdA4xIgzZxrBXV9lChoBmgJaA9DCMcQABz7zXFAlIaUUpRoFUv/aBZHQOMSIQfdRBN1fZQoaAZoCWgPQwhr1EM0urpyQJSGlFKUaBVL5mgWR0DjEi7Q2uPndX2UKGgGaAloD0MIERjrG5gAY0CUhpRSlGgVTegDaBZHQOMSM0p1A7h1fZQoaAZoCWgPQwgOL4hIDYVwQJSGlFKUaBVL3mgWR0DjEjcvN/vwdX2UKGgGaAloD0MIegCL/PoOcUCUhpRSlGgVS95oFkdA4xI5SWJJoXV9lChoBmgJaA9DCJZa7zdapm1AlIaUUpRoFUvdaBZHQOMSOmcjJMh1fZQoaAZoCWgPQwjScMrc/F9uQJSGlFKUaBVL7WgWR0DjEjvVbRnfdX2UKGgGaAloD0MIJqYLsfpxckCUhpRSlGgVS+BoFkdA4xI8gDifhHV9lChoBmgJaA9DCEWhZd2/w3BAlIaUUpRoFUvqaBZHQOMSQDM7lq91fZQoaAZoCWgPQwjkFYielGVvQJSGlFKUaBVL8mgWR0DjEk3+hoM8dX2UKGgGaAloD0MIcxJKXwg0cUCUhpRSlGgVTQYBaBZHQOMSV55HEuR1fZQoaAZoCWgPQwiNYOP6d/5vQJSGlFKUaBVL2mgWR0DjEmaXk5p8dX2UKGgGaAloD0MIGO5cGOlhcECUhpRSlGgVS+loFkdA4xJwYao/A3V9lChoBmgJaA9DCLwjY7X5v3BAlIaUUpRoFUvbaBZHQOMSdqEi+td1fZQoaAZoCWgPQwg8wf7rXCRvQJSGlFKUaBVL82gWR0DjEnejNY8udX2UKGgGaAloD0MIDvYmhmTBckCUhpRSlGgVS9BoFkdA4xJ5tGmUGHV9lChoBmgJaA9DCIejq3T3L3BAlIaUUpRoFUv0aBZHQOMSfBlar3l1fZQoaAZoCWgPQwjQCaGD7i1wQJSGlFKUaBVNFwFoFkdA4xKHamwaBXV9lChoBmgJaA9DCAcHexMDvXBAlIaUUpRoFU2WAWgWR0DjEoq0Xxe+dX2UKGgGaAloD0MICTNt/wohcECUhpRSlGgVS+ZoFkdA4xKMvboKUnV9lChoBmgJaA9DCHPbvkf9BnJAlIaUUpRoFUv3aBZHQOMSm7K3d9F1fZQoaAZoCWgPQwgTfxR1ph9xQJSGlFKUaBVL4GgWR0DjEqRpsXSCdX2UKGgGaAloD0MIzY+/tOhncECUhpRSlGgVS+5oFkdA4xK5TzundnV9lChoBmgJaA9DCIFDqFLzqHJAlIaUUpRoFU0dAWgWR0DjEr8qUeMidX2UKGgGaAloD0MISwSqfxA+ckCUhpRSlGgVS/VoFkdA4xK/LsjVx3V9lChoBmgJaA9DCNl6hnDMZG9AlIaUUpRoFUvgaBZHQOMSycKZ2IR1fZQoaAZoCWgPQwjMRBFS9wpyQJSGlFKUaBVL2mgWR0DjEsppBX0YdX2UKGgGaAloD0MIRKfn3VgycECUhpRSlGgVS/doFkdA4xLNLXDm83V9lChoBmgJaA9DCFKeeTlsv3FAlIaUUpRoFUvvaBZHQOMS4Vi2Dxt1fZQoaAZoCWgPQwiKcmn8QphkQJSGlFKUaBVN6ANoFkdA4xLneF10T3V9lChoBmgJaA9DCPGcLSC0KG5AlIaUUpRoFUvjaBZHQOMS596NVBF1fZQoaAZoCWgPQwhhU+dRMYJwQJSGlFKUaBVLzGgWR0DjEvY8dxQ0dX2UKGgGaAloD0MIg4WTNH8tYUCUhpRSlGgVTegDaBZHQOMTAAqTbFl1fZQoaAZoCWgPQwi1FfvL7rFkQJSGlFKUaBVN6ANoFkdA4xMAVgH/tXV9lChoBmgJaA9DCCiZnNqZ3HBAlIaUUpRoFUvfaBZHQOMTApxaPjp1fZQoaAZoCWgPQwiC4seYe+1xQJSGlFKUaBVL42gWR0DjEw7zOopAdX2UKGgGaAloD0MIEynN5vEtcECUhpRSlGgVS/BoFkdA4xMSGpEQXnV9lChoBmgJaA9DCCB7vfvj+3BAlIaUUpRoFUvJaBZHQOMTI4IjW091fZQoaAZoCWgPQwjC3sSQHKpjQJSGlFKUaBVN6ANoFkdA4xMv4L9deXV9lChoBmgJaA9DCIFZoUi333JAlIaUUpRoFUvyaBZHQOMTL+Zof0V1fZQoaAZoCWgPQwgiGt1BbOxjQJSGlFKUaBVN6ANoFkdA4xM4lB6a9nV9lChoBmgJaA9DCOxq8pTVs3BAlIaUUpRoFUvmaBZHQOMTOpxcVxl1fZQoaAZoCWgPQwiKraBpCcFwQJSGlFKUaBVL02gWR0DjE0A9GI9DdX2UKGgGaAloD0MI7//jhAkpckCUhpRSlGgVS/xoFkdA4xNJW+fyw3V9lChoBmgJaA9DCPOtD+uNNHJAlIaUUpRoFUvtaBZHQOMTUuvhZQp1fZQoaAZoCWgPQwgllSnmoEZkQJSGlFKUaBVN6ANoFkdA4xNUTmnwX3V9lChoBmgJaA9DCOZ4BaKnFHBAlIaUUpRoFU0OAWgWR0DjE164sEq2dX2UKGgGaAloD0MINlfNcwRGcECUhpRSlGgVS9xoFkdA4xNhU1IiDHV9lChoBmgJaA9DCFVQUfUrVnJAlIaUUpRoFUvjaBZHQOMTbz3bmEJ1fZQoaAZoCWgPQwjUDRR459pyQJSGlFKUaBVLzGgWR0DjE3GEoOQRdX2UKGgGaAloD0MIUAEwngEZcECUhpRSlGgVTQkBaBZHQOMTemMS9M91fZQoaAZoCWgPQwig4GJFDbZvQJSGlFKUaBVL9GgWR0DjE4WjbBXTdX2UKGgGaAloD0MIz6Pi/444NECUhpRSlGgVS2RoFkdA4xOPH1Fpf3V9lChoBmgJaA9DCLIQHQJHGnBAlIaUUpRoFUvdaBZHQOMTkoFC9h91fZQoaAZoCWgPQwhqwvaTsWxiQJSGlFKUaBVN6ANoFkdA4xOW5IYm9nV9lChoBmgJaA9DCJRQ+kJI9WBAlIaUUpRoFU3oA2gWR0DjE5mm8/UwdX2UKGgGaAloD0MIWWlSCrqEb0CUhpRSlGgVS+NoFkdA4xOgzJhfB3V9lChoBmgJaA9DCDxqTIj5h3FAlIaUUpRoFUvuaBZHQOMTs6+SKWN1fZQoaAZoCWgPQwhHHR1XI3ZsQJSGlFKUaBVL7WgWR0DjE72TxG2DdX2UKGgGaAloD0MIn8coz/yickCUhpRSlGgVTdIBaBZHQOMTvhU96kZ1fZQoaAZoCWgPQwi7l/vkaE5yQJSGlFKUaBVNbgFoFkdA4xPJzsY2sXV9lChoBmgJaA9DCINuL2nMoHBAlIaUUpRoFUvpaBZHQOMT0M43m3h1fZQoaAZoCWgPQwiGHFvPEL9vQJSGlFKUaBVL3mgWR0DjE9EPikwfdX2UKGgGaAloD0MIvFmD99VvbkCUhpRSlGgVS99oFkdA4xPXe/gzg3V9lChoBmgJaA9DCJxrmKGxuHBAlIaUUpRoFU0lAWgWR0DjE9fzU7SzdX2UKGgGaAloD0MIh9wMN2CvbECUhpRSlGgVTQcBaBZHQOMT3ze2uxN1fZQoaAZoCWgPQwjQX+gRo+tgQJSGlFKUaBVN6ANoFkdA4xPfOYIBzXV9lChoBmgJaA9DCHhEhepm83BAlIaUUpRoFUvnaBZHQOMT4CmsNlR1fZQoaAZoCWgPQwiqfxDJEDViQJSGlFKUaBVN6ANoFkdA4xPruQp4KXV9lChoBmgJaA9DCIWVCioqWnFAlIaUUpRoFUvWaBZHQOMT7Z/5Lyt1fZQoaAZoCWgPQwhgOUIGMjJwQJSGlFKUaBVLy2gWR0DjE/RrMTvidX2UKGgGaAloD0MIaY1BJwQjYkCUhpRSlGgVTegDaBZHQOMT/dG0/np1fZQoaAZoCWgPQwghsHJoEX5uQJSGlFKUaBVL1WgWR0DjFAnUMoc8dX2UKGgGaAloD0MI7ginBe/8cECUhpRSlGgVS9toFkdA4xQLB4t6HHV9lChoBmgJaA9DCASNmUQ9im5AlIaUUpRoFUvhaBZHQOMUE5YzSCx1fZQoaAZoCWgPQwjLZaNz/hJvQJSGlFKUaBVNTAFoFkdA4xQYhpHqeXV9lChoBmgJaA9DCPAXsyXrVHJAlIaUUpRoFUvSaBZHQOMUGPdGiHt1fZQoaAZoCWgPQwiSIFwBhXZdQJSGlFKUaBVN6ANoFkdA4xQZkzXSSnV9lChoBmgJaA9DCGOcvwkFgHJAlIaUUpRoFUv2aBZHQOMUGfbAUL51fZQoaAZoCWgPQwg+rg0VI4NwQJSGlFKUaBVL32gWR0DjFBuzposadX2UKGgGaAloD0MIfUCgM6micUCUhpRSlGgVS+loFkdA4xQeDPnjhnVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 350,
79
- "n_steps": 2048,
80
- "gamma": 0.99,
81
- "gae_lambda": 0.95,
82
- "ent_coef": 0.0,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
- "n_epochs": 10,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7deb5d7e50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7deb5d7ee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7deb5d7f70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7deb5d6040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7deb5d60d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7deb5d6160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7deb5d61f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7deb5d6280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7deb5d6310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7deb5d63a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7deb5d6430>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f7deb5d9100>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
+ "n_envs": 32,
45
+ "num_timesteps": 10027008,
46
+ "_total_timesteps": 10000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1673382900046566507,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJrjBbxCBE8/NrPnPFHfdb8Wfwq9ohY3ugAAAAAAAAAAM54HPdwFFLwtRws7Zy/KPLnwUL0qAZo4AACAPwAAgD8zkUI94VqKuqjmWzirqLcxvKQru5YLfLcAAIA/AACAP5oHQj2C4bk/LhNCPo4qW75tmTc9Xh3GPQAAAAAAAAAAM5Mluz1qa7tD0G68GzWOPG71t7wD53M9AACAPwAAgD+a56I9js/gPcBCnb57UgG/jwvePMJbSr4AAAAAAAAAAM2Lmb1vhbs/R86qvkwZHL7tkMy9E+wsvgAAAAAAAAAAM1YNvc/3dj19LIw+6+a3vsM18z0BCkk+AAAAAAAAAACaAck7ks7wPPZmcb1jL7++IBuTPbY+rrwAAAAAAAAAAFr9q71tb6k/n5Krvsyv7L4xEiC+BexovgAAAAAAAAAAzTCmu1zjMboaQx+1mmC7Ls2bpzo+31o0AACAPwAAgD9mqHe9mhINPpAKSD5PEtu+EybZunm9Bz4AAAAAAAAAADMbJDzh6K26iy4aM3Mbm7AmRwe6NgjHswAAgD8AAIA/5scGPUgdmrqQwDA03mqmrvruAzuAoo2zAACAPwAAgD/NCMM84cyHut7MELzco1K2j7KROgXLvTUAAIA/AAAAAABQ1Lv2cBG6+ytOM9o7sa8bwag7KaS7swAAgD8AAIA/QEYBvvSLMT42wvI+zSrZvugowT2xJqo+AAAAAAAAAADN5CY+YARIP0DJ2z02USu/LcKyPjjCAz0AAAAAAAAAAGa4CD6PLMg+IDyPvjrRH7+KwAo+ttkrvgAAAAAAAAAAM8s9u1nAsD9U/ce9YGzxvockWTu5ObM8AAAAAAAAAADazZu93FQlvKH4NT1cZI499L2LPKtu2DsAAIA/AACAP3NREr7H0Fk+RdTzPnLS9L4rX8k9po6KPgAAAAAAAAAAjZToPQyHkj5EEh++LuYUv1hMLD4ECQa+AAAAAAAAAADNPJM7UoC9u316ZLty0gk9npYNPSu7470AAIA/AACAP2YS+LykoiO741dVPGlOhTy5aXm88HVnPQAAgD8AAIA/s84YPcP4CD3YN369Tw7KvseQmbwfaBC9AAAAAAAAAAAAIyM9m4iavBw+AL4HyXI9S2YnvaciFboAAIA/AACAP7P7iz1FvOQ833rCvo4u2L7xGam9niSBvgAAAAAAAAAAzfnVPKReuT1mDUO+m0XKvit8bTxwNu29AAAAAAAAAACabx89nBqmP4r55D7Z3ji/kuCCPEU/Qj4AAAAAAAAAAEYHU75kZM0+wMSYPk26Ob+g5Ga+51GHPgAAAAAAAAAAZqBfPV7stD+PLyc/SvSgvS2tJ7wmY8g9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWkV/aOYickCUhpRSlIwBbJRLsYwBdJRHQLa5RpMYdhl1fZQoaAZoCWgPQwg0LbEy2mtyQJSGlFKUaBVLrmgWR0C2uVM/UvwmdX2UKGgGaAloD0MIbjXrjG9rcUCUhpRSlGgVS6poFkdAtrlWhlDneXV9lChoBmgJaA9DCFch5SfVJ3NAlIaUUpRoFUvEaBZHQLa5Xu5z5oJ1fZQoaAZoCWgPQwhiD+1jBd9yQJSGlFKUaBVLo2gWR0C2uWctbs4UdX2UKGgGaAloD0MITyLCvwijb0CUhpRSlGgVS6doFkdAtrlqEqUeMnV9lChoBmgJaA9DCAUx0LUv9HFAlIaUUpRoFUuuaBZHQLa5eF4LThJ1fZQoaAZoCWgPQwgo1xTI7OFvQJSGlFKUaBVLmGgWR0C2uZJXuE26dX2UKGgGaAloD0MIdGIP7WODR0CUhpRSlGgVS2JoFkdAtrmUYdhiLHV9lChoBmgJaA9DCGOARBOoonFAlIaUUpRoFUugaBZHQLa5m79ycTd1fZQoaAZoCWgPQwgydy0hX91xQJSGlFKUaBVLm2gWR0C2uaRUm2LHdX2UKGgGaAloD0MIJ4QOukR4ckCUhpRSlGgVS7hoFkdAtrmlGc4HX3V9lChoBmgJaA9DCLQh/8xgjHJAlIaUUpRoFUu/aBZHQLa5uSaEzwd1fZQoaAZoCWgPQwh/vFetDJdyQJSGlFKUaBVLu2gWR0C2ubkbT+efdX2UKGgGaAloD0MIUDi7tUyycECUhpRSlGgVS5poFkdAtrnMZ3s5XHV9lChoBmgJaA9DCGFT51HxQHJAlIaUUpRoFUuZaBZHQLa5z1P3ztl1fZQoaAZoCWgPQwjM0HgiyH1yQJSGlFKUaBVLvWgWR0C2uc9D+irUdX2UKGgGaAloD0MI6uxkcNTBcUCUhpRSlGgVS7JoFkdAtrnOaH9FWnV9lChoBmgJaA9DCCIAOPasNnBAlIaUUpRoFUu2aBZHQLa50BiTdLx1fZQoaAZoCWgPQwgJh97iYYNwQJSGlFKUaBVLnWgWR0C2ueQ0waisdX2UKGgGaAloD0MIfGDHfwFBc0CUhpRSlGgVS9doFkdAtrnk3l0YCXV9lChoBmgJaA9DCLN8XYb/R29AlIaUUpRoFUugaBZHQLa57g2ZRbd1fZQoaAZoCWgPQwhmMhzP5wlvQJSGlFKUaBVLoWgWR0C2ue3CwbEQdX2UKGgGaAloD0MINpIE4UqwcECUhpRSlGgVS69oFkdAtrnwYaYNRXV9lChoBmgJaA9DCI1g4/p3J3JAlIaUUpRoFUuiaBZHQLa59RWcSXd1fZQoaAZoCWgPQwhdpbvr7LhxQJSGlFKUaBVLlmgWR0C2ufT7di2EdX2UKGgGaAloD0MIFygpsMDPckCUhpRSlGgVS6hoFkdAtroDiZOSGXV9lChoBmgJaA9DCJ2BkZe1X3JAlIaUUpRoFUuPaBZHQLa6GCbc45t1fZQoaAZoCWgPQwgTgH9KlRZyQJSGlFKUaBVLzmgWR0C2uh3/5tWNdX2UKGgGaAloD0MIXMr5Ym/2ckCUhpRSlGgVS7FoFkdAtrop/hESd3V9lChoBmgJaA9DCJQvaCEBCnNAlIaUUpRoFUu6aBZHQLa6MfQKKHh1fZQoaAZoCWgPQwgeGavN/1t0QJSGlFKUaBVL/GgWR0C2uju6Ae7udX2UKGgGaAloD0MI6E8b1emCcECUhpRSlGgVS7ZoFkdAtrpV3B55aHV9lChoBmgJaA9DCHiZYaMsj3NAlIaUUpRoFUu2aBZHQLa6Zfq5byJ1fZQoaAZoCWgPQwhl48EW+5pxQJSGlFKUaBVLq2gWR0C2umlJ+UhWdX2UKGgGaAloD0MITKWfcLbtcECUhpRSlGgVS7RoFkdAtrprr0J4S3V9lChoBmgJaA9DCFclkX1QTnJAlIaUUpRoFUu9aBZHQLa6bW7voeR1fZQoaAZoCWgPQwgrEhPU8ONzQJSGlFKUaBVLwWgWR0C2uofyTY/WdX2UKGgGaAloD0MIrDjVWhj0b0CUhpRSlGgVS6NoFkdAtrqXDFZPmHV9lChoBmgJaA9DCONuEK0VPnJAlIaUUpRoFUvDaBZHQLa6m9MsYl91fZQoaAZoCWgPQwhqpRDIpRZzQJSGlFKUaBVLrGgWR0C2uqZBkZrIdX2UKGgGaAloD0MIICkiw6o5cUCUhpRSlGgVS6JoFkdAtrqso/iYLXV9lChoBmgJaA9DCKhXyjKEwnNAlIaUUpRoFUu/aBZHQLa6s6d1+y91fZQoaAZoCWgPQwiBfAkVXCZyQJSGlFKUaBVLvmgWR0C2urtc0LtvdX2UKGgGaAloD0MIe0s5X2z2cECUhpRSlGgVS6doFkdAtrrMnBtUGXV9lChoBmgJaA9DCJm36joUY3BAlIaUUpRoFUu0aBZHQLa65G7z06J1fZQoaAZoCWgPQwhDrtSzoFxyQJSGlFKUaBVL32gWR0C2uugK8cuKdX2UKGgGaAloD0MIIHpSJjVKc0CUhpRSlGgVS7doFkdAtrrore67NHV9lChoBmgJaA9DCJxpwvZTVXJAlIaUUpRoFUu6aBZHQLa67m5Dqnp1fZQoaAZoCWgPQwgeGED4EEtwQJSGlFKUaBVLrGgWR0C2uu3HmzSkdX2UKGgGaAloD0MIZDvfT00lcECUhpRSlGgVS65oFkdAtrrwHlfZ3HV9lChoBmgJaA9DCNi7P94rEnNAlIaUUpRoFUupaBZHQLa68tUGVzJ1fZQoaAZoCWgPQwjq6SPwhzBxQJSGlFKUaBVLrGgWR0C2uvfBSDRMdX2UKGgGaAloD0MIghq+hXXrckCUhpRSlGgVS89oFkdAtrr4bLlmvnV9lChoBmgJaA9DCAG/RpJgg3NAlIaUUpRoFUvFaBZHQLa6/6UaAFx1fZQoaAZoCWgPQwjn/BTHgSdwQJSGlFKUaBVLuGgWR0C2uw/TLGJfdX2UKGgGaAloD0MIWHGqtbBeckCUhpRSlGgVS7FoFkdAtrsUuAZsK3V9lChoBmgJaA9DCCY0SSzplHBAlIaUUpRoFUuqaBZHQLa7HUcn3L51fZQoaAZoCWgPQwhfCg+aHR5xQJSGlFKUaBVLxWgWR0C2uyH/1g6VdX2UKGgGaAloD0MIyQG7mnwGc0CUhpRSlGgVS8xoFkdAtrsnp1RtQHV9lChoBmgJaA9DCEHYKVYNJ29AlIaUUpRoFUucaBZHQLa7LREF4cF1fZQoaAZoCWgPQwiVYdwNYjdzQJSGlFKUaBVLtGgWR0C2u0Z9E1EWdX2UKGgGaAloD0MIyXTo9HwxcUCUhpRSlGgVS5VoFkdAtrtTkMkQgHV9lChoBmgJaA9DCJQXmYDf1HFAlIaUUpRoFUufaBZHQLa7X5eqrBF1fZQoaAZoCWgPQwh72AsFrEdyQJSGlFKUaBVLymgWR0C2u2CdWhh6dX2UKGgGaAloD0MIWDofnuVxcUCUhpRSlGgVS6xoFkdAtrt21+iJwnV9lChoBmgJaA9DCGNBYVCmlTRAlIaUUpRoFUtoaBZHQLa7hnmJWNp1fZQoaAZoCWgPQwhFSrN5nCtzQJSGlFKUaBVLvmgWR0C2u4+NcW0rdX2UKGgGaAloD0MI4jycwPRicECUhpRSlGgVS8poFkdAtruR3mmtQ3V9lChoBmgJaA9DCB+7C5RUB3NAlIaUUpRoFUukaBZHQLa7n/4ZdfN1fZQoaAZoCWgPQwhzSGqhpARyQJSGlFKUaBVLtmgWR0C2u6fszEaVdX2UKGgGaAloD0MIiBOYTmvdckCUhpRSlGgVS6ZoFkdAtruudH2AXnV9lChoBmgJaA9DCOT09XzNbHFAlIaUUpRoFUu2aBZHQLa7uLUCq6x1fZQoaAZoCWgPQwgpIy4ATZFyQJSGlFKUaBVLxGgWR0C2u+cJQcghdX2UKGgGaAloD0MIQrXBiWisc0CUhpRSlGgVS8VoFkdAtrvxG8VYZHV9lChoBmgJaA9DCI/hsZ9FBXBAlIaUUpRoFUumaBZHQLa7+hwEQoV1fZQoaAZoCWgPQwgTLXk8LflyQJSGlFKUaBVLxmgWR0C2u/tDIBBBdX2UKGgGaAloD0MIeXk6V9SlckCUhpRSlGgVS7BoFkdAtrv/xaxHG3V9lChoBmgJaA9DCFtbeF7qb3JAlIaUUpRoFUuraBZHQLa8AKaG5+Z1fZQoaAZoCWgPQwjb+1QV2rVzQJSGlFKUaBVLsmgWR0C2vA0G/vfCdX2UKGgGaAloD0MIlUc3wmJqc0CUhpRSlGgVS8ZoFkdAtrwMPlMh5nV9lChoBmgJaA9DCPDAAMIHmW9AlIaUUpRoFUupaBZHQLa8EWiUPhB1fZQoaAZoCWgPQwjBxvXvuq1wQJSGlFKUaBVLnmgWR0C2vBebRWtEdX2UKGgGaAloD0MIBb8NMR7qcUCUhpRSlGgVS6hoFkdAtrwiDjBEa3V9lChoBmgJaA9DCPPlBdjH9XFAlIaUUpRoFUvCaBZHQLa8IWN3np11fZQoaAZoCWgPQwg75dGNsEFzQJSGlFKUaBVLvmgWR0C2vCTZlFtsdX2UKGgGaAloD0MIaf6Y1iahc0CUhpRSlGgVS6JoFkdAtrwsihWYGHV9lChoBmgJaA9DCDzZzYy+iHJAlIaUUpRoFUvHaBZHQLa8N8pCrtF1fZQoaAZoCWgPQwiWWYRi68RxQJSGlFKUaBVLymgWR0C2vD3Q6ZH/dX2UKGgGaAloD0MI0QMfg5W5cUCUhpRSlGgVS6hoFkdAtrw9khA4XHV9lChoBmgJaA9DCEfjUL/LKXRAlIaUUpRoFUuuaBZHQLa8TcEeQuF1fZQoaAZoCWgPQwh4YtaLIdRyQJSGlFKUaBVLo2gWR0C2vFdnK4hEdX2UKGgGaAloD0MIPtAKDFnkckCUhpRSlGgVS9loFkdAtrx/z5GjK3V9lChoBmgJaA9DCD2CGylbfnFAlIaUUpRoFUu1aBZHQLa8i/Rmbsp1fZQoaAZoCWgPQwgpXmVtUyxxQJSGlFKUaBVLrmgWR0C2vKhtP558dX2UKGgGaAloD0MIS6shcc9JdECUhpRSlGgVS8VoFkdAtryoRGtp23V9lChoBmgJaA9DCIquCz94CXNAlIaUUpRoFUvPaBZHQLa8q9cKPXF1fZQoaAZoCWgPQwiU+NwJtilzQJSGlFKUaBVLpWgWR0C2vMDqv/zbdX2UKGgGaAloD0MIfEPhs7WOc0CUhpRSlGgVS7doFkdAtrzA95hScnV9lChoBmgJaA9DCGGNs+lIj3FAlIaUUpRoFUuuaBZHQLa8yc7Qswt1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 1224,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
86
+ "n_epochs": 4,
87
  "clip_range": {
88
  ":type:": "<class 'function'>",
89
  ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
lunar-noob/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bff2afb9404798a8717170545df0b2bdd71d0458d1e284e9f61464a20dfda3b1
3
- size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc474816e79216319c6e6788f4b2988a2fee95044c0c416a17e5f9f838a3363b
3
+ size 88057
lunar-noob/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc0a9c2b9021802962927c2c605ccf923fdabc150856d9f4c3054573c2c178b0
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3633a8ece76f4c5de2b2aebee2ba3e46c393dd9f0476d2303d9a89ee6d6c672b
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 259.53021867613006, "std_reward": 21.51937964511484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T19:44:07.787206"}
 
1
+ {"mean_reward": 293.4868715199155, "std_reward": 23.371393847404573, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T05:58:50.721901"}