chrimerss's picture
Upload README.md with huggingface_hub
c1b3ae0 verified
---
language: en
license: mit
tags:
- flood-segmentation
- remote-sensing
- earth-observation
- dem
- computer-vision
- prithvi
- foundation-model
datasets:
- custom-flood-dataset
metrics:
- iou
- dice
- f1
library_name: terratorch
pipeline_tag: image-segmentation
---
# ResNet-101 U-Net for Flood Risk Segmentation
## Model Description
This model is a ResNet-101 U-Net fine-tuned for flood risk segmentation from Digital Elevation Models (DEM) and precipitation data.
ResNet-101 backbone U-Net for flood segmentation
## Model Details
- **Architecture**: ResNet-101 U-Net
- **Training Epochs**: 49
- **Model Size**: 779MB
- **Task**: Semantic Segmentation (Flood Risk Prediction)
- **Input**: DEM + Precipitation data
- **Output**: Flood depth categories
## Usage
```python
import torch
from terratorch.tasks import SemanticSegmentationTask
# Load the model
model = SemanticSegmentationTask.load_from_checkpoint("path/to/checkpoint.ckpt")
model.eval()
# Your inference code here
```
## Training Data
The model was trained on flood simulation data from multiple US counties, including:
- DEM data from USGS National Map
- Precipitation data from NOAA Atlas 14
- Simulated flood depth labels
## Performance
The model achieves state-of-the-art performance on flood segmentation tasks across diverse geographical regions.
## Limitations
- Model is trained primarily on US geographical data
- Performance may vary on international datasets
- Requires specific input preprocessing
## Citation
If you use this model in your research, please cite:
```
@misc{flood-foundation-model-resnet101-unet,
title={Flood Risk Foundation Model: ResNet-101 U-Net},
author={FloodRisk-DL Team},
year={2024},
url={https://huggingface.co/chrimerss/flood-foundation-resnet101-unet}
}
```