Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: samoline/5cf4792e-00af-4d5f-b922-4c7d5237f306
bf16: auto
chat_template: llama3
dataloader_num_workers: 8
dataset_prepared_path: null
datasets:
- data_files:
  - 4b98334ce710802c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_input: input
    field_instruction: instruct
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: cimol/94bee815-bb95-47e6-835f-ad38135a2860
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/4b98334ce710802c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.999
  adam_epsilon: 1e-8
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 5
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 859088c3-5caa-40f5-84fd-490d89cece7b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 859088c3-5caa-40f5-84fd-490d89cece7b
warmup_steps: 150
weight_decay: 0.0
xformers_attention: null

94bee815-bb95-47e6-835f-ad38135a2860

This model is a fine-tuned version of samoline/5cf4792e-00af-4d5f-b922-4c7d5237f306 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9920

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 150
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
0.7732 0.0001 1 0.9834
1.1379 0.0002 2 0.9834
0.9396 0.0004 4 0.9834
0.9896 0.0005 6 0.9834
0.8178 0.0007 8 0.9834
0.9894 0.0009 10 0.9834
1.9155 0.0011 12 0.9834
1.0269 0.0012 14 0.9835
0.7556 0.0014 16 0.9836
0.8767 0.0016 18 0.9838
1.1682 0.0018 20 0.9840
0.764 0.0020 22 0.9842
1.1331 0.0021 24 0.9845
0.868 0.0023 26 0.9848
0.7687 0.0025 28 0.9851
0.9999 0.0027 30 0.9855
0.649 0.0029 32 0.9861
1.2312 0.0030 34 0.9865
0.6942 0.0032 36 0.9870
0.8366 0.0034 38 0.9875
0.7883 0.0036 40 0.9879
0.7254 0.0037 42 0.9882
0.9824 0.0039 44 0.9882
0.692 0.0041 46 0.9884
0.7093 0.0043 48 0.9886
0.897 0.0045 50 0.9885
0.549 0.0046 52 0.9886
0.7148 0.0048 54 0.9887
1.327 0.0050 56 0.9888
1.0484 0.0052 58 0.9890
1.1284 0.0053 60 0.9892
0.653 0.0055 62 0.9894
0.8266 0.0057 64 0.9896
0.835 0.0059 66 0.9900
0.7215 0.0061 68 0.9902
0.9994 0.0062 70 0.9904
1.0789 0.0064 72 0.9904
0.7381 0.0066 74 0.9903
0.8917 0.0068 76 0.9903
0.9863 0.0070 78 0.9901
0.8527 0.0071 80 0.9903
0.878 0.0073 82 0.9903
1.2412 0.0075 84 0.9904
1.0756 0.0077 86 0.9904
0.8945 0.0078 88 0.9905
0.6819 0.0080 90 0.9902
0.7676 0.0082 92 0.9901
0.8783 0.0084 94 0.9904
1.0132 0.0086 96 0.9907
0.8469 0.0087 98 0.9913
0.9485 0.0089 100 0.9920

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cimol/94bee815-bb95-47e6-835f-ad38135a2860

Adapter
(3)
this model