See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: samoline/5cf4792e-00af-4d5f-b922-4c7d5237f306
bf16: auto
chat_template: llama3
dataloader_num_workers: 8
dataset_prepared_path: null
datasets:
- data_files:
- 4b98334ce710802c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: cimol/94bee815-bb95-47e6-835f-ad38135a2860
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/4b98334ce710802c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 5
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 859088c3-5caa-40f5-84fd-490d89cece7b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 859088c3-5caa-40f5-84fd-490d89cece7b
warmup_steps: 150
weight_decay: 0.0
xformers_attention: null
94bee815-bb95-47e6-835f-ad38135a2860
This model is a fine-tuned version of samoline/5cf4792e-00af-4d5f-b922-4c7d5237f306 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9920
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 150
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7732 | 0.0001 | 1 | 0.9834 |
1.1379 | 0.0002 | 2 | 0.9834 |
0.9396 | 0.0004 | 4 | 0.9834 |
0.9896 | 0.0005 | 6 | 0.9834 |
0.8178 | 0.0007 | 8 | 0.9834 |
0.9894 | 0.0009 | 10 | 0.9834 |
1.9155 | 0.0011 | 12 | 0.9834 |
1.0269 | 0.0012 | 14 | 0.9835 |
0.7556 | 0.0014 | 16 | 0.9836 |
0.8767 | 0.0016 | 18 | 0.9838 |
1.1682 | 0.0018 | 20 | 0.9840 |
0.764 | 0.0020 | 22 | 0.9842 |
1.1331 | 0.0021 | 24 | 0.9845 |
0.868 | 0.0023 | 26 | 0.9848 |
0.7687 | 0.0025 | 28 | 0.9851 |
0.9999 | 0.0027 | 30 | 0.9855 |
0.649 | 0.0029 | 32 | 0.9861 |
1.2312 | 0.0030 | 34 | 0.9865 |
0.6942 | 0.0032 | 36 | 0.9870 |
0.8366 | 0.0034 | 38 | 0.9875 |
0.7883 | 0.0036 | 40 | 0.9879 |
0.7254 | 0.0037 | 42 | 0.9882 |
0.9824 | 0.0039 | 44 | 0.9882 |
0.692 | 0.0041 | 46 | 0.9884 |
0.7093 | 0.0043 | 48 | 0.9886 |
0.897 | 0.0045 | 50 | 0.9885 |
0.549 | 0.0046 | 52 | 0.9886 |
0.7148 | 0.0048 | 54 | 0.9887 |
1.327 | 0.0050 | 56 | 0.9888 |
1.0484 | 0.0052 | 58 | 0.9890 |
1.1284 | 0.0053 | 60 | 0.9892 |
0.653 | 0.0055 | 62 | 0.9894 |
0.8266 | 0.0057 | 64 | 0.9896 |
0.835 | 0.0059 | 66 | 0.9900 |
0.7215 | 0.0061 | 68 | 0.9902 |
0.9994 | 0.0062 | 70 | 0.9904 |
1.0789 | 0.0064 | 72 | 0.9904 |
0.7381 | 0.0066 | 74 | 0.9903 |
0.8917 | 0.0068 | 76 | 0.9903 |
0.9863 | 0.0070 | 78 | 0.9901 |
0.8527 | 0.0071 | 80 | 0.9903 |
0.878 | 0.0073 | 82 | 0.9903 |
1.2412 | 0.0075 | 84 | 0.9904 |
1.0756 | 0.0077 | 86 | 0.9904 |
0.8945 | 0.0078 | 88 | 0.9905 |
0.6819 | 0.0080 | 90 | 0.9902 |
0.7676 | 0.0082 | 92 | 0.9901 |
0.8783 | 0.0084 | 94 | 0.9904 |
1.0132 | 0.0086 | 96 | 0.9907 |
0.8469 | 0.0087 | 98 | 0.9913 |
0.9485 | 0.0089 | 100 | 0.9920 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support