See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Hermes-3-Llama-3.1-8B
bf16: auto
chat_template: llama3
dataloader_num_workers: 8
dataset_prepared_path: null
datasets:
- data_files:
- d7759a0049e38789_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: cimol/ee84fe34-f20a-40f9-8bc4-745baa3fbebe
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 10
micro_batch_size: 8
mlflow_experiment_name: /tmp/d7759a0049e38789_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-8
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e4b465c7-a3bd-4378-9f28-7d1f30436e5d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e4b465c7-a3bd-4378-9f28-7d1f30436e5d
warmup_steps: 15
weight_decay: 0.0
xformers_attention: null
ee84fe34-f20a-40f9-8bc4-745baa3fbebe
This model is a fine-tuned version of unsloth/Hermes-3-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 1.6627 |
No log | 0.0002 | 2 | 1.6460 |
No log | 0.0003 | 3 | 1.6023 |
No log | 0.0004 | 4 | 1.5439 |
No log | 0.0005 | 5 | 1.4872 |
No log | 0.0006 | 6 | 1.4477 |
No log | 0.0006 | 7 | 1.4170 |
No log | 0.0007 | 8 | 1.4044 |
No log | 0.0008 | 9 | 1.3885 |
1.4684 | 0.0009 | 10 | 1.3674 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cimol/ee84fe34-f20a-40f9-8bc4-745baa3fbebe
Base model
unsloth/Hermes-3-Llama-3.1-8B