YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Image to GPS Project - ConvNext, MobileNet and EfficientNet Ensemble

## Training Data Statistics
lat_mean = 39.951537011424264
lat_std = 0.0006940325318781937
lon_mean = -75.19152009539549
lon_std = 0.0007607716964655242

How to Load the Model and Perform Inference

# install dependencies
pip install geopy datasets torch torchvision huggingface_hub
# import packages
import numpy as np
from geopy.distance import geodesic
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import torch.nn as nn
from torchvision.models import mobilenet_v2, MobileNet_V2_Weights, convnext_tiny, ConvNeXt_Tiny_Weights, efficientnet_b0, EfficientNet_B0_Weights
from datasets import load_dataset
from huggingface_hub import hf_hub_download
# load the model 
repo_id = "cis519projectA/Ensemble_ConvNeXt_MobileNet_EfficientNet_Weight_Adjustment"
filename = "custom_ensemble_weight_adjust.pth"
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# define models
class CustomEfficientNetModel(nn.Module):
    def __init__(self, weights=EfficientNet_B0_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.efficientnet = efficientnet_b0(weights=weights)
        in_features = self.efficientnet.classifier[1].in_features
        self.efficientnet.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )
        for param in self.efficientnet.features[:3].parameters():
            param.requires_grad = False

    def forward(self, x):
        return self.efficientnet(x)

class CustomConvNeXtModel(nn.Module):
    def __init__(self, weights=ConvNeXt_Tiny_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.convnext = convnext_tiny(weights=weights)
        in_features = self.convnext.classifier[2].in_features
        self.convnext.classifier = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Flatten(),
            nn.Linear(in_features, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )
        for param in self.convnext.features[:4].parameters():
            param.requires_grad = False
    def forward(self, x):
        return self.convnext(x)

class CustomMobileNetModel(nn.Module):
    def __init__(self, weights=MobileNet_V2_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.mobilenet = mobilenet_v2(weights=weights)
        in_features = self.mobilenet.classifier[1].in_features
        self.mobilenet.classifier = nn.Sequential(
            nn.Linear(in_features, 1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(512, num_classes)
        )
        for param in self.mobilenet.features[:5].parameters():
            param.requires_grad = False

    def forward(self, x):
        return self.mobilenet(x)

class EnsembleModel(nn.Module):
    def __init__(self, convnext_model, mobilenet_model, efficientnet_model, num_classes=2):
        super().__init__()
        self.convnext = convnext_model
        self.mobilenet = mobilenet_model
        self.efficientnet = efficientnet_model
        self.weight_convnext = nn.Parameter(torch.tensor(1.0))
        self.weight_mobilenet = nn.Parameter(torch.tensor(1.0))
        self.weight_efficientnet = nn.Parameter(torch.tensor(1.0))
        self.fc = nn.Sequential(
            nn.Linear(num_classes * 3, 512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )

    def forward(self, x):
        convnext_out = self.convnext(x)
        mobilenet_out = self.mobilenet(x)
        efficientnet_out = self.efficientnet(x)
        weights = torch.softmax(torch.stack([self.weight_convnext, self.weight_mobilenet, self.weight_efficientnet]), dim=0)
        combined = (weights[0] * convnext_out +
                    weights[1] * mobilenet_out +
                    weights[2] * efficientnet_out)
        return combined

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
convnext_model = CustomConvNeXtModel(weights=ConvNeXt_Tiny_Weights.DEFAULT, num_classes=2)
mobilenet_model = CustomMobileNetModel(weights=MobileNet_V2_Weights.DEFAULT, num_classes=2)
efficientnet_model = CustomEfficientNetModel(weights=EfficientNet_B0_Weights.DEFAULT, num_classes=2)
ensemble_model = EnsembleModel(convnext_model, mobilenet_model, efficientnet_model, num_classes=2).to(device)
# load the model weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
state_dict = torch.load(model_path, map_location=device)
ensemble_model.load_state_dict(state_dict)
ensemble_model.to(device)
ensemble_model.eval()
# load the dataset
dataset_test = load_dataset("gydou/released_img", split="train")
# define transformers
inference_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Parameters for denormalization
lat_mean = 39.951537011424264
lat_std = 0.0006940325318781937
lon_mean = -75.19152009539549
lon_std = 0.0007607716964655242
class GPSImageDataset(Dataset):
    def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
        self.hf_dataset = hf_dataset
        self.transform = transform
        self.latitude_mean = lat_mean
        self.latitude_std = lat_std
        self.longitude_mean = lon_mean
        self.longitude_std = lon_std
    def __len__(self):
        return len(self.hf_dataset)
    def __getitem__(self, idx):
        example = self.hf_dataset[idx]
        image = example['image']
        latitude = example['Latitude']
        longitude = example['Longitude']
        if self.transform:
            image = self.transform(image)
        latitude = (latitude - self.latitude_mean) / self.latitude_std
        longitude = (longitude - self.longitude_mean) / self.longitude_std
        gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
        return image, gps_coords
# transform test data
test_dataset = GPSImageDataset(
    hf_dataset=dataset_test,
    transform=inference_transform,
    lat_mean=lat_mean,
    lat_std=lat_std,
    lon_mean=lon_mean,
    lon_std=lon_std
)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# evaluate
def evaluate_model_single_batch(model, dataloader, lat_mean, lat_std, lon_mean, lon_std):
    all_distances = []
    model.eval()
    with torch.no_grad():
        for batch_idx, (images, gps_coords) in enumerate(dataloader):            
            images, gps_coords = images.to(device), gps_coords.to(device)
            outputs = model(images)
            preds_denorm = outputs.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
            actuals_denorm = gps_coords.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
            for pred, actual in zip(preds_denorm, actuals_denorm):
                distance = geodesic((actual[0], actual[1]), (pred[0], pred[1])).meters
                all_distances.append(distance)
            break
    mean_error = np.mean(all_distances)
    rmse_error = np.sqrt(np.mean(np.square(all_distances)))
    return mean_error, rmse_error
# Evaluate using only one batch
mean_error, rmse_error = evaluate_model_single_batch(
    ensemble_model, test_dataloader, lat_mean, lat_std, lon_mean, lon_std
)
print(f"Mean Error (meters): {mean_error:.2f}, RMSE (meters): {rmse_error:.2f}")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.