Driver Drowsiness Detection Model
This model is designed to detect driver drowsiness from facial images using a CNN architecture.
Model Details
- Architecture: CNN
- Input: Facial images (64x64x3)
- Output: Binary classification (drowsy/not drowsy)
Usage
import tensorflow as tf
import cv2
import numpy as np
# Load model
model = tf.keras.models.load_model('drowsiness_model.h5')
# Preprocess image
img = cv2.imread('face.jpg')
img = cv2.resize(img, (64, 64))
img = img / 255.0
img = np.expand_dims(img, axis=0)
# Make prediction
prediction = model.predict(img)
is_drowsy = prediction[0][0] > 0.5
Training Details
- Dataset: Custom driver drowsiness dataset
- Training method: Binary cross-entropy loss with Adam optimizer
- Validation split: 20%
- Early stopping with patience=3
Model Architecture
- Input Layer: 64x64x3 images
- Convolutional Layers:
- Conv2D(32, 3x3) + BatchNorm + ReLU
- MaxPooling2D(2x2)
- Conv2D(64, 3x3) + BatchNorm + ReLU
- MaxPooling2D(2x2)
- Conv2D(128, 3x3) + BatchNorm + ReLU
- MaxPooling2D(2x2)
- Dense Layers:
- Dense(128) + BatchNorm + ReLU
- Dropout(0.5)
- Dense(1) + Sigmoid
Performance
- Binary classification for drowsiness detection
- Optimized for real-time inference
- Suitable for embedded systems and edge devices
License
This model is released under the MIT License.
- Downloads last month
- 79
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ckcl/driver-drowsiness-detector
Base model
google/mobilenet_v2_1.0_224