Driver Drowsiness Detection Model

This model is designed to detect driver drowsiness from facial images using a CNN architecture.

Model Details

  • Architecture: CNN
  • Input: Facial images (64x64x3)
  • Output: Binary classification (drowsy/not drowsy)

Usage

import tensorflow as tf
import cv2
import numpy as np

# Load model
model = tf.keras.models.load_model('drowsiness_model.h5')

# Preprocess image
img = cv2.imread('face.jpg')
img = cv2.resize(img, (64, 64))
img = img / 255.0
img = np.expand_dims(img, axis=0)

# Make prediction
prediction = model.predict(img)
is_drowsy = prediction[0][0] > 0.5

Training Details

  • Dataset: Custom driver drowsiness dataset
  • Training method: Binary cross-entropy loss with Adam optimizer
  • Validation split: 20%
  • Early stopping with patience=3

Model Architecture

  • Input Layer: 64x64x3 images
  • Convolutional Layers:
    • Conv2D(32, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
    • Conv2D(64, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
    • Conv2D(128, 3x3) + BatchNorm + ReLU
    • MaxPooling2D(2x2)
  • Dense Layers:
    • Dense(128) + BatchNorm + ReLU
    • Dropout(0.5)
    • Dense(1) + Sigmoid

Performance

  • Binary classification for drowsiness detection
  • Optimized for real-time inference
  • Suitable for embedded systems and edge devices

License

This model is released under the MIT License.

Downloads last month
79
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ckcl/driver-drowsiness-detector

Finetuned
(50)
this model