Sentence Similarity
Safetensors
Japanese
modernbert
feature-extraction
hpprc commited on
Commit
0d37081
·
verified ·
1 Parent(s): 7886bde

Upload 17 files

Browse files
results-len512/Classification/scores_amazon_counterfactual_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8076989283604759,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.9098712446351931,
9
+ "macro_f1": 0.6259174311926605
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.9120171673819742,
13
+ "macro_f1": 0.7401074610623682
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.9346895074946466,
19
+ "macro_f1": 0.8076989283604759
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_amazon_review_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.6002930507515865,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.4572,
9
+ "macro_f1": 0.4502483462385972
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.6088,
13
+ "macro_f1": 0.6028591976118355
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.6054,
19
+ "macro_f1": 0.6002930507515865
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_massive_intent_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.7927230771632646,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.7712739793408756,
9
+ "macro_f1": 0.7556875588894797
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.8327594687653713,
13
+ "macro_f1": 0.8262484502743833
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8298587760591796,
19
+ "macro_f1": 0.7927230771632646
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Classification/scores_massive_scenario_classification.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "macro_f1",
3
+ "metric_value": 0.8836398132177599,
4
+ "details": {
5
+ "optimal_classifier_name": "logreg",
6
+ "val_scores": {
7
+ "knn_cosine_k_2": {
8
+ "accuracy": 0.8657156910969012,
9
+ "macro_f1": 0.859699565451082
10
+ },
11
+ "logreg": {
12
+ "accuracy": 0.882439744220364,
13
+ "macro_f1": 0.8795176163694028
14
+ }
15
+ },
16
+ "test_scores": {
17
+ "logreg": {
18
+ "accuracy": 0.8856758574310692,
19
+ "macro_f1": 0.8836398132177599
20
+ }
21
+ }
22
+ }
23
+ }
results-len512/Clustering/scores_livedoor_news.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.6039269159025831,
4
+ "details": {
5
+ "optimal_clustering_model_name": "MiniBatchKMeans",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.5960385156082993,
9
+ "homogeneity_score": 0.5901260734047985,
10
+ "completeness_score": 0.6020706296953126
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.583716765442441,
14
+ "homogeneity_score": 0.5673363073951831,
15
+ "completeness_score": 0.6010712376730697
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.555434369511391,
19
+ "homogeneity_score": 0.5533062994229689,
20
+ "completeness_score": 0.557578872332676
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.583716765442441,
24
+ "homogeneity_score": 0.5673363073951831,
25
+ "completeness_score": 0.6010712376730697
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "MiniBatchKMeans": {
30
+ "v_measure_score": 0.6039269159025831,
31
+ "homogeneity_score": 0.5959125218894525,
32
+ "completeness_score": 0.6121598189000157
33
+ }
34
+ }
35
+ }
36
+ }
results-len512/Clustering/scores_mewsc16.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "v_measure_score",
3
+ "metric_value": 0.5133038855338062,
4
+ "details": {
5
+ "optimal_clustering_model_name": "Birch",
6
+ "val_scores": {
7
+ "MiniBatchKMeans": {
8
+ "v_measure_score": 0.510867661944874,
9
+ "homogeneity_score": 0.5605115011968407,
10
+ "completeness_score": 0.469302128698923
11
+ },
12
+ "AgglomerativeClustering": {
13
+ "v_measure_score": 0.5147662040011469,
14
+ "homogeneity_score": 0.5531310208295678,
15
+ "completeness_score": 0.48137812268486785
16
+ },
17
+ "BisectingKMeans": {
18
+ "v_measure_score": 0.4918319882518622,
19
+ "homogeneity_score": 0.5376041031234438,
20
+ "completeness_score": 0.45324249905198777
21
+ },
22
+ "Birch": {
23
+ "v_measure_score": 0.51740915477174,
24
+ "homogeneity_score": 0.5588139550196363,
25
+ "completeness_score": 0.4817167967576891
26
+ }
27
+ },
28
+ "test_scores": {
29
+ "Birch": {
30
+ "v_measure_score": 0.5133038855338062,
31
+ "homogeneity_score": 0.5481383517989595,
32
+ "completeness_score": 0.4826323579250646
33
+ }
34
+ }
35
+ }
36
+ }
results-len512/PairClassification/scores_paws_x_ja.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "binary_f1",
3
+ "metric_value": 0.6225736879942487,
4
+ "details": {
5
+ "optimal_distance_metric": "dot_similarities",
6
+ "val_scores": {
7
+ "cosine_distances": {
8
+ "accuracy": 0.5725,
9
+ "accuracy_threshold": 0.7325698733329773,
10
+ "binary_f1": 0.5979670522257273,
11
+ "binary_f1_threshold": 1.0
12
+ },
13
+ "manhatten_distances": {
14
+ "accuracy": 0.6075,
15
+ "accuracy_threshold": 91.31901550292969,
16
+ "binary_f1": 0.6016949152542372,
17
+ "binary_f1_threshold": 786.4454956054688
18
+ },
19
+ "euclidean_distances": {
20
+ "accuracy": 0.6075,
21
+ "accuracy_threshold": 5.207228660583496,
22
+ "binary_f1": 0.6016949152542372,
23
+ "binary_f1_threshold": 45.460025787353516
24
+ },
25
+ "dot_similarities": {
26
+ "accuracy": 0.5825,
27
+ "accuracy_threshold": 6222.314453125,
28
+ "binary_f1": 0.6046176046176047,
29
+ "binary_f1_threshold": 5251.693359375
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "dot_similarities": {
34
+ "accuracy": 0.5705,
35
+ "accuracy_threshold": 6222.314453125,
36
+ "binary_f1": 0.6225736879942487,
37
+ "binary_f1_threshold": 5251.693359375
38
+ }
39
+ }
40
+ }
41
+ }
results-len512/Reranking/scores_esci.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9334575664125155,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "ndcg@10": 0.9480715786819617,
9
+ "ndcg@20": 0.9588590589385586,
10
+ "ndcg@40": 0.9663121013878336
11
+ },
12
+ "dot_score": {
13
+ "ndcg@10": 0.9320754586179866,
14
+ "ndcg@20": 0.9468361394565974,
15
+ "ndcg@40": 0.9554828676062351
16
+ },
17
+ "euclidean_distance": {
18
+ "ndcg@10": 0.9482545881429024,
19
+ "ndcg@20": 0.9589918342682602,
20
+ "ndcg@40": 0.9664476093776743
21
+ }
22
+ },
23
+ "test_scores": {
24
+ "euclidean_distance": {
25
+ "ndcg@10": 0.9334575664125155,
26
+ "ndcg@20": 0.9499440970639671,
27
+ "ndcg@40": 0.9591420703620055
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/Retrieval/scores_jagovfaqs_22k.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7664675957880878,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.6341035390465048,
9
+ "accuracy@3": 0.8008189529102077,
10
+ "accuracy@5": 0.8470312957004972,
11
+ "accuracy@10": 0.8900263234863995,
12
+ "ndcg@10": 0.7660561172829335,
13
+ "mrr@10": 0.7258752443163089
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.3208540508920737,
17
+ "accuracy@3": 0.5013161743199765,
18
+ "accuracy@5": 0.5764843521497514,
19
+ "accuracy@10": 0.6689090377303305,
20
+ "ndcg@10": 0.4876219735593598,
21
+ "mrr@10": 0.4305070404880283
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.6314711904065516,
25
+ "accuracy@3": 0.7987715706346885,
26
+ "accuracy@5": 0.8455688797894121,
27
+ "accuracy@10": 0.8873939748464463,
28
+ "ndcg@10": 0.7635587399092253,
29
+ "mrr@10": 0.7234064309159369
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.6359649122807017,
35
+ "accuracy@3": 0.8011695906432749,
36
+ "accuracy@5": 0.8482456140350877,
37
+ "accuracy@10": 0.887719298245614,
38
+ "ndcg@10": 0.7664675957880878,
39
+ "mrr@10": 0.7270308874036948
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_jaqket.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.7180699960435167,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.5618090452261306,
9
+ "accuracy@3": 0.7577889447236181,
10
+ "accuracy@5": 0.7919597989949749,
11
+ "accuracy@10": 0.8381909547738694,
12
+ "ndcg@10": 0.7084681554153308,
13
+ "mrr@10": 0.6660417165191037
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.43517587939698493,
17
+ "accuracy@3": 0.6231155778894473,
18
+ "accuracy@5": 0.6814070351758794,
19
+ "accuracy@10": 0.7437185929648241,
20
+ "ndcg@10": 0.5904434310879052,
21
+ "mrr@10": 0.5413404323203317
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.5487437185929648,
25
+ "accuracy@3": 0.749748743718593,
26
+ "accuracy@5": 0.7849246231155779,
27
+ "accuracy@10": 0.8311557788944723,
28
+ "ndcg@10": 0.6974016012793113,
29
+ "mrr@10": 0.6538426258275508
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.567703109327984,
35
+ "accuracy@3": 0.757271815446339,
36
+ "accuracy@5": 0.8164493480441324,
37
+ "accuracy@10": 0.8565697091273822,
38
+ "ndcg@10": 0.7180699960435167,
39
+ "mrr@10": 0.6729501998057665
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_mrtydi.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.47178534512951525,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.3900862068965517,
9
+ "accuracy@3": 0.5711206896551724,
10
+ "accuracy@5": 0.6325431034482759,
11
+ "accuracy@10": 0.7036637931034483,
12
+ "ndcg@10": 0.5437386125657795,
13
+ "mrr@10": 0.4929734537493152
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.15301724137931033,
17
+ "accuracy@3": 0.26185344827586204,
18
+ "accuracy@5": 0.3103448275862069,
19
+ "accuracy@10": 0.37823275862068967,
20
+ "ndcg@10": 0.2583544424007982,
21
+ "mrr@10": 0.22087181855500812
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.3933189655172414,
25
+ "accuracy@3": 0.5732758620689655,
26
+ "accuracy@5": 0.6314655172413793,
27
+ "accuracy@10": 0.7025862068965517,
28
+ "ndcg@10": 0.5458202479710179,
29
+ "mrr@10": 0.4958350437876296
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.33611111111111114,
35
+ "accuracy@3": 0.5291666666666667,
36
+ "accuracy@5": 0.6069444444444444,
37
+ "accuracy@10": 0.6805555555555556,
38
+ "ndcg@10": 0.47178534512951525,
39
+ "mrr@10": 0.44654872134038764
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_abs_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9611129584687909,
4
+ "details": {
5
+ "optimal_distance_metric": "euclidean_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.8852459016393442,
9
+ "accuracy@3": 0.9508196721311475,
10
+ "accuracy@5": 0.9836065573770492,
11
+ "accuracy@10": 0.9918032786885246,
12
+ "ndcg@10": 0.9416795109749949,
13
+ "mrr@10": 0.9252146760343483
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.7704918032786885,
17
+ "accuracy@3": 0.8688524590163934,
18
+ "accuracy@5": 0.8852459016393442,
19
+ "accuracy@10": 0.9344262295081968,
20
+ "ndcg@10": 0.8509358984819808,
21
+ "mrr@10": 0.8242909185532137
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.8852459016393442,
25
+ "accuracy@3": 0.9672131147540983,
26
+ "accuracy@5": 0.9754098360655737,
27
+ "accuracy@10": 0.9918032786885246,
28
+ "ndcg@10": 0.9436379619364552,
29
+ "mrr@10": 0.9276736924277909
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "euclidean_distance": {
34
+ "accuracy@1": 0.9308943089430894,
35
+ "accuracy@3": 0.9695121951219512,
36
+ "accuracy@5": 0.9796747967479674,
37
+ "accuracy@10": 0.9878048780487805,
38
+ "ndcg@10": 0.9611129584687909,
39
+ "mrr@10": 0.9523736933797909
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_title_abs.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.9812952838148481,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.9590163934426229,
9
+ "accuracy@3": 0.9836065573770492,
10
+ "accuracy@5": 1.0,
11
+ "accuracy@10": 1.0,
12
+ "ndcg@10": 0.9812321198854286,
13
+ "mrr@10": 0.975
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.680327868852459,
17
+ "accuracy@3": 0.8852459016393442,
18
+ "accuracy@5": 0.9344262295081968,
19
+ "accuracy@10": 0.9754098360655737,
20
+ "ndcg@10": 0.8353833079929985,
21
+ "mrr@10": 0.7894320843091334
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.9590163934426229,
25
+ "accuracy@3": 0.9836065573770492,
26
+ "accuracy@5": 1.0,
27
+ "accuracy@10": 1.0,
28
+ "ndcg@10": 0.9812321198854286,
29
+ "mrr@10": 0.975
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.959349593495935,
35
+ "accuracy@3": 0.9939024390243902,
36
+ "accuracy@5": 0.9939024390243902,
37
+ "accuracy@10": 0.9959349593495935,
38
+ "ndcg@10": 0.9812952838148481,
39
+ "mrr@10": 0.9762388695315525
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/Retrieval/scores_nlp_journal_title_intro.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "ndcg@10",
3
+ "metric_value": 0.8825842093499676,
4
+ "details": {
5
+ "optimal_distance_metric": "cosine_similarity",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "accuracy@1": 0.7459016393442623,
9
+ "accuracy@3": 0.860655737704918,
10
+ "accuracy@5": 0.9098360655737705,
11
+ "accuracy@10": 0.9344262295081968,
12
+ "ndcg@10": 0.84056074193758,
13
+ "mrr@10": 0.8101775956284151
14
+ },
15
+ "dot_score": {
16
+ "accuracy@1": 0.5819672131147541,
17
+ "accuracy@3": 0.7704918032786885,
18
+ "accuracy@5": 0.819672131147541,
19
+ "accuracy@10": 0.8770491803278688,
20
+ "ndcg@10": 0.7296021589345921,
21
+ "mrr@10": 0.6820582877959928
22
+ },
23
+ "euclidean_distance": {
24
+ "accuracy@1": 0.7295081967213115,
25
+ "accuracy@3": 0.8688524590163934,
26
+ "accuracy@5": 0.9098360655737705,
27
+ "accuracy@10": 0.9262295081967213,
28
+ "ndcg@10": 0.832395357779658,
29
+ "mrr@10": 0.8017304189435336
30
+ }
31
+ },
32
+ "test_scores": {
33
+ "cosine_similarity": {
34
+ "accuracy@1": 0.7987804878048781,
35
+ "accuracy@3": 0.9024390243902439,
36
+ "accuracy@5": 0.9390243902439024,
37
+ "accuracy@10": 0.9613821138211383,
38
+ "ndcg@10": 0.8825842093499676,
39
+ "mrr@10": 0.8569573493353979
40
+ }
41
+ }
42
+ }
43
+ }
results-len512/STS/scores_jsick.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.7464955416231873,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.7836218434851538,
9
+ "spearman": 0.756430688801211
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.7923932174397492,
13
+ "spearman": 0.7607985259507607
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.7923932174397492,
17
+ "spearman": 0.7607985259507607
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.5635997924106966,
21
+ "spearman": 0.5248804985646915
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.7817941273703908,
27
+ "spearman": 0.7464955416231873
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/STS/scores_jsts.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metric_name": "spearman",
3
+ "metric_value": 0.8385298782229563,
4
+ "details": {
5
+ "optimal_similarity_metric": "manhatten_distance",
6
+ "val_scores": {
7
+ "cosine_similarity": {
8
+ "pearson": 0.8486043626272783,
9
+ "spearman": 0.8120034758535889
10
+ },
11
+ "manhatten_distance": {
12
+ "pearson": 0.855291696445933,
13
+ "spearman": 0.8162534021929027
14
+ },
15
+ "euclidean_distance": {
16
+ "pearson": 0.855291696445933,
17
+ "spearman": 0.8162534021929027
18
+ },
19
+ "dot_score": {
20
+ "pearson": 0.6439197584013935,
21
+ "spearman": 0.5839306171056204
22
+ }
23
+ },
24
+ "test_scores": {
25
+ "manhatten_distance": {
26
+ "pearson": 0.8750297182135832,
27
+ "spearman": 0.8385298782229563
28
+ }
29
+ }
30
+ }
31
+ }
results-len512/summary.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Classification": {
3
+ "amazon_counterfactual_classification": {
4
+ "macro_f1": 0.8076989283604759
5
+ },
6
+ "amazon_review_classification": {
7
+ "macro_f1": 0.6002930507515865
8
+ },
9
+ "massive_intent_classification": {
10
+ "macro_f1": 0.7927230771632646
11
+ },
12
+ "massive_scenario_classification": {
13
+ "macro_f1": 0.8836398132177599
14
+ }
15
+ },
16
+ "Reranking": {
17
+ "esci": {
18
+ "ndcg@10": 0.9334575664125155
19
+ }
20
+ },
21
+ "Retrieval": {
22
+ "jagovfaqs_22k": {
23
+ "ndcg@10": 0.7664675957880878
24
+ },
25
+ "jaqket": {
26
+ "ndcg@10": 0.7180699960435167
27
+ },
28
+ "mrtydi": {
29
+ "ndcg@10": 0.47178534512951525
30
+ },
31
+ "nlp_journal_abs_intro": {
32
+ "ndcg@10": 0.9611129584687909
33
+ },
34
+ "nlp_journal_title_abs": {
35
+ "ndcg@10": 0.9812952838148481
36
+ },
37
+ "nlp_journal_title_intro": {
38
+ "ndcg@10": 0.8825842093499676
39
+ }
40
+ },
41
+ "STS": {
42
+ "jsick": {
43
+ "spearman": 0.7464955416231873
44
+ },
45
+ "jsts": {
46
+ "spearman": 0.8385298782229563
47
+ }
48
+ },
49
+ "Clustering": {
50
+ "livedoor_news": {
51
+ "v_measure_score": 0.6039269159025831
52
+ },
53
+ "mewsc16": {
54
+ "v_measure_score": 0.5133038855338062
55
+ }
56
+ },
57
+ "PairClassification": {
58
+ "paws_x_ja": {
59
+ "binary_f1": 0.6225736879942487
60
+ }
61
+ }
62
+ }