hungnm's picture
Model save
2e710f1 verified
|
raw
history blame
2.12 kB
metadata
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: roberta-base-multilingual-sentiment
    results: []

roberta-base-multilingual-sentiment

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4341
  • F1: 0.8169
  • Precision: 0.8176
  • Recall: 0.8163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 1024
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
0.893 1.0 3074 0.4333 0.8038 0.8076 0.8022
0.8335 2.0 6148 0.4180 0.8150 0.8152 0.8149
0.7149 3.0 9222 0.4238 0.8162 0.8168 0.8158
0.7298 4.0 12296 0.4258 0.8168 0.8178 0.8160
0.6729 5.0 15370 0.4341 0.8169 0.8176 0.8163

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0