|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - Freeway-v5 | 
					
						
						|  | - deep-reinforcement-learning | 
					
						
						|  | - reinforcement-learning | 
					
						
						|  | - custom-implementation | 
					
						
						|  | library_name: cleanrl | 
					
						
						|  | model-index: | 
					
						
						|  | - name: PPO | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: reinforcement-learning | 
					
						
						|  | name: reinforcement-learning | 
					
						
						|  | dataset: | 
					
						
						|  | name: Freeway-v5 | 
					
						
						|  | type: Freeway-v5 | 
					
						
						|  | metrics: | 
					
						
						|  | - type: mean_reward | 
					
						
						|  | value: 32.40 +/- 0.66 | 
					
						
						|  | name: mean_reward | 
					
						
						|  | verified: false | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # (CleanRL) **PPO** Agent Playing **Freeway-v5** | 
					
						
						|  |  | 
					
						
						|  | This is a trained model of a PPO agent playing Freeway-v5. | 
					
						
						|  | The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be | 
					
						
						|  | found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). | 
					
						
						|  |  | 
					
						
						|  | ## Get Started | 
					
						
						|  |  | 
					
						
						|  | To use this model, please install the `cleanrl` package with the following command: | 
					
						
						|  |  | 
					
						
						|  | ``` | 
					
						
						|  | pip install "cleanrl[jax,envpool,atari]" | 
					
						
						|  | python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Freeway-v5 | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ## Command to reproduce the training | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py | 
					
						
						|  | curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/pyproject.toml | 
					
						
						|  | curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed3/raw/main/poetry.lock | 
					
						
						|  | poetry install --all-extras | 
					
						
						|  | python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 3 | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | # Hyperparameters | 
					
						
						|  | ```python | 
					
						
						|  | {'actor_device_ids': [0], | 
					
						
						|  | 'anneal_lr': True, | 
					
						
						|  | 'async_batch_size': 20, | 
					
						
						|  | 'async_update': 3, | 
					
						
						|  | 'batch_size': 7680, | 
					
						
						|  | 'capture_video': False, | 
					
						
						|  | 'clip_coef': 0.1, | 
					
						
						|  | 'cuda': True, | 
					
						
						|  | 'ent_coef': 0.01, | 
					
						
						|  | 'env_id': 'Freeway-v5', | 
					
						
						|  | 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', | 
					
						
						|  | 'gae_lambda': 0.95, | 
					
						
						|  | 'gamma': 0.99, | 
					
						
						|  | 'hf_entity': 'cleanrl', | 
					
						
						|  | 'learner_device_ids': [1, 2, 3, 4, 5, 6], | 
					
						
						|  | 'learning_rate': 0.00025, | 
					
						
						|  | 'max_grad_norm': 0.5, | 
					
						
						|  | 'minibatch_size': 1920, | 
					
						
						|  | 'norm_adv': True, | 
					
						
						|  | 'num_actor_threads': 1, | 
					
						
						|  | 'num_envs': 60, | 
					
						
						|  | 'num_minibatches': 4, | 
					
						
						|  | 'num_steps': 128, | 
					
						
						|  | 'num_updates': 6510, | 
					
						
						|  | 'profile': False, | 
					
						
						|  | 'save_model': True, | 
					
						
						|  | 'seed': 3, | 
					
						
						|  | 'target_kl': None, | 
					
						
						|  | 'test_actor_learner_throughput': False, | 
					
						
						|  | 'torch_deterministic': True, | 
					
						
						|  | 'total_timesteps': 50000000, | 
					
						
						|  | 'track': True, | 
					
						
						|  | 'update_epochs': 4, | 
					
						
						|  | 'upload_model': True, | 
					
						
						|  | 'vf_coef': 0.5, | 
					
						
						|  | 'wandb_entity': None, | 
					
						
						|  | 'wandb_project_name': 'cleanRL'} | 
					
						
						|  | ``` | 
					
						
						|  |  |