clique / src /.ipynb_checkpoints /2.2_lrmc_bilevel-checkpoint.py
qingy2024's picture
Upload folder using huggingface_hub
bf620c6 verified
# 2.1_lrmc_bilevel.py
# Top-1 LRMC ablation with debug guards so seeds differences are visible.
# Requires: torch, torch_geometric, torch_scatter, torch_sparse
import argparse, json, hashlib
from pathlib import Path
from typing import List, Tuple, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch_scatter import scatter_mean
from torch_sparse import coalesce, spspmm
from torch_geometric.datasets import Planetoid
from torch_geometric.nn import GCNConv
# ---------------------------
# Utilities: edges and seeds
# ---------------------------
def add_scaled_self_loops(edge_index: Tensor,
edge_weight: Optional[Tensor],
num_nodes: int,
scale: float = 1.0) -> Tuple[Tensor, Tensor]:
if scale == 0.0:
if edge_weight is None:
edge_weight = torch.ones(edge_index.size(1), device=edge_index.device)
return edge_index, edge_weight
device = edge_index.device
self_loops = torch.arange(num_nodes, device=device)
self_index = torch.stack([self_loops, self_loops], dim=0)
self_weight = torch.full((num_nodes,), float(scale), device=device)
base_w = edge_weight if edge_weight is not None else torch.ones(edge_index.size(1), device=device)
ei = torch.cat([edge_index, self_index], dim=1)
ew = torch.cat([base_w, self_weight], dim=0)
ei, ew = coalesce(ei, ew, num_nodes, num_nodes, op='add')
return ei, ew
def adjacency_power(edge_index: Tensor, num_nodes: int, k: int = 2) -> Tensor:
# A^2 using spspmm; return binary, coalesced, no self loops
row, col = edge_index
val = torch.ones(row.numel(), device=edge_index.device)
Ai, Av = edge_index, val
Ri, _ = spspmm(Ai, Av, Ai, Av, num_nodes, num_nodes, num_nodes)
mask = Ri[0] != Ri[1]
Ri = Ri[:, mask]
Ri, _ = coalesce(Ri, torch.ones(Ri.size(1), device=edge_index.device), num_nodes, num_nodes, op='add')
return Ri
def build_cluster_graph(edge_index: Tensor,
num_nodes: int,
node2cluster: Tensor,
weight_per_edge: Optional[Tensor] = None,
num_clusters: Optional[int] = None
) -> Tuple[Tensor, Tensor, int]:
K = int(node2cluster.max().item()) + 1 if num_clusters is None else num_clusters
src, dst = edge_index
csrc = node2cluster[src]
cdst = node2cluster[dst]
edge_c = torch.stack([csrc, cdst], dim=0)
w = weight_per_edge if weight_per_edge is not None else torch.ones(edge_c.size(1), device=edge_c.device)
edge_c, w = coalesce(edge_c, w, K, K, op='add')
return edge_c, w, K
# -----
# Seeds
# -----
def _md5(path: Path) -> str:
h = hashlib.md5()
with path.open('rb') as f:
for chunk in iter(lambda: f.read(8192), b''):
h.update(chunk)
return h.hexdigest()
def _extract_members(cluster_obj: dict) -> List[int]:
"""
Try 'members' first, then 'seed_nodes'. Raise if neither works.
"""
m = cluster_obj.get("members", None)
if isinstance(m, list) and len(m) > 0:
return list(dict.fromkeys(int(x) for x in m)) # dedupe/preserve order
m2 = cluster_obj.get("seed_nodes", None)
if isinstance(m2, list) and len(m2) > 0:
return list(dict.fromkeys(int(x) for x in m2))
# If both present but empty, return empty; caller will handle.
if isinstance(m, list) or isinstance(m2, list):
return []
raise KeyError("Cluster object has neither 'members' nor 'seed_nodes'.")
def _pick_top1_cluster(obj: dict) -> List[int]:
"""
From {"clusters":[{..., "score":float, "members" or "seed_nodes"}, ...]},
choose max by (score, size). Returns deduped member list.
"""
clusters = obj.get("clusters", [])
if not isinstance(clusters, list) or len(clusters) == 0:
return []
def keyfun(c):
score = float(c.get("score", 0.0))
try:
mem = _extract_members(c)
except KeyError:
mem = []
return (score, len(mem))
best = max(clusters, key=keyfun)
try:
members = _extract_members(best)
except KeyError:
members = []
return sorted(set(int(x) for x in members))
def load_top1_assignment(seeds_json: str, n_nodes: int, debug: bool = False) -> Tuple[Tensor, Tensor, dict]:
"""
Hard assignment for top-1 LRMC cluster:
cluster 0 = top cluster; others are singletons.
Returns node2cluster[N], cluster_scores[K,1], and a small debug dict.
"""
p = Path(seeds_json)
text = p.read_text(encoding='utf-8')
obj = json.loads(text)
C_star = _pick_top1_cluster(obj)
# if len(C_star) > 0 and max(C_star) == n_nodes:
# Looks 1-indexed (since max == N, not N-1) → shift down by 1
C_star = [u - 1 for u in C_star]
C_star = torch.tensor(C_star, dtype=torch.long)
# C_star = _pick_top1_cluster(obj)
# C_star = torch.tensor(C_star, dtype=torch.long)
node2cluster = torch.full((n_nodes,), -1, dtype=torch.long)
if C_star.numel() == 0:
# FAIL LOUDLY instead of silently falling back to identity
raise RuntimeError(
f"No members found for top-1 cluster in {seeds_json}. "
f"Expected 'members' or 'seed_nodes' to be non-empty."
)
node2cluster[C_star] = 0
outside = torch.tensor(sorted(set(range(n_nodes)) - set(C_star.tolist())), dtype=torch.long)
if outside.numel() > 0:
node2cluster[outside] = torch.arange(1, 1 + outside.numel(), dtype=torch.long)
assert int(node2cluster.min()) >= 0
K = 1 + outside.numel()
cluster_scores = torch.zeros(K, 1, dtype=torch.float32)
cluster_scores[0, 0] = 1.0
info = {
"json_md5": _md5(p),
"top_cluster_size": int(C_star.numel()),
"K": int(K),
"n_outside": int(outside.numel()),
"first_members": [int(x) for x in C_star[:10].tolist()],
}
if debug:
print(f"[LRMC] Loaded {seeds_json} (md5={info['json_md5']}) | "
f"top_size={info['top_cluster_size']} K={info['K']} outside={info['n_outside']} "
f"first10={info['first_members']}")
return node2cluster, cluster_scores, info
# --------------------------
# Models (baseline + pooled)
# --------------------------
class GCN2(nn.Module):
def __init__(self, in_dim, hid, out_dim, dropout=0.5):
super().__init__()
self.conv1 = GCNConv(in_dim, hid)
self.conv2 = GCNConv(hid, out_dim)
self.dropout = dropout
def forward(self, x, edge_index):
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.conv2(x, edge_index)
return x
class OneClusterPool(nn.Module):
def __init__(self,
in_dim: int,
hid: int,
out_dim: int,
node2cluster: Tensor,
edge_index_node: Tensor,
num_nodes: int,
self_loop_scale: float = 0.0,
use_a2_for_clusters: bool = False,
debug_header: str = ""):
super().__init__()
self.n2c = node2cluster.long()
self.K = int(self.n2c.max().item()) + 1
# Node graph (A + λI if desired)
ei_node = edge_index_node
ei_node, ew_node = add_scaled_self_loops(ei_node, None, num_nodes, scale=self_loop_scale)
self.register_buffer("edge_index_node", ei_node)
self.register_buffer("edge_weight_node", ew_node)
# Cluster graph
ei_for_c = adjacency_power(edge_index_node, num_nodes, k=2) if use_a2_for_clusters else edge_index_node
edge_index_c, edge_weight_c, K = build_cluster_graph(ei_for_c, num_nodes, self.n2c)
self.register_buffer("edge_index_c", edge_index_c)
self.register_buffer("edge_weight_c", edge_weight_c)
self.K = K
if debug_header:
print(f"[POOL] {debug_header} | cluster_edges={edge_index_c.size(1)} (K={K})")
# Layers
self.gcn_node1 = GCNConv(in_dim, hid, add_self_loops=False, normalize=True)
self.gcn_cluster = GCNConv(hid, hid, add_self_loops=True, normalize=True)
self.gcn_node2 = GCNConv(hid * 2, out_dim) # concat [h_node, h_broadcast]
def forward(self, x: Tensor, edge_index_node: Tensor) -> Tensor:
h1 = F.relu(self.gcn_node1(x, self.edge_index_node, self.edge_weight_node))
z = scatter_mean(h1, self.n2c, dim=0, dim_size=self.K) # [K, H]
z2 = F.relu(self.gcn_cluster(z, self.edge_index_c, self.edge_weight_c))
hb = z2[self.n2c] # [N, H]
hcat = torch.cat([h1, hb], dim=1) # [N, 2H]
out = self.gcn_node2(hcat, edge_index_node)
return out
# -------------
# Training glue
# -------------
@torch.no_grad()
def accuracy(logits: Tensor, y: Tensor, mask: Tensor) -> float:
pred = logits[mask].argmax(dim=1)
return (pred == y[mask]).float().mean().item()
def run_train_eval(model: nn.Module, data, epochs=200, lr=0.01, wd=5e-4):
opt = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
best_val, best_state = 0.0, None
for ep in range(1, epochs + 1):
model.train()
opt.zero_grad(set_to_none=True)
logits = model(data.x, data.edge_index)
loss = F.cross_entropy(logits[data.train_mask], data.y[data.train_mask])
loss.backward(); opt.step()
model.eval()
logits = model(data.x, data.edge_index)
val_acc = accuracy(logits, data.y, data.val_mask)
if val_acc > best_val:
best_val, best_state = val_acc, {k: v.detach().clone() for k, v in model.state_dict().items()}
if ep % 20 == 0:
tr = accuracy(logits, data.y, data.train_mask)
te = accuracy(logits, data.y, data.test_mask)
print(f"[{ep:04d}] loss={loss.item():.4f} train={tr:.3f} val={val_acc:.3f} test={te:.3f}")
if best_state is not None:
model.load_state_dict(best_state)
model.eval()
logits = model(data.x, data.edge_index)
return {"val": accuracy(logits, data.y, data.val_mask),
"test": accuracy(logits, data.y, data.test_mask)}
# -----------
# Entrypoint
# -----------
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--dataset", required=True, choices=["Cora", "Citeseer", "Pubmed"])
ap.add_argument("--seeds", required=True, help="Path to LRMC seeds JSON (single large graph).")
ap.add_argument("--variant", choices=["baseline", "pool"], default="pool")
ap.add_argument("--hidden", type=int, default=128)
ap.add_argument("--epochs", type=int, default=200)
ap.add_argument("--lr", type=float, default=0.01)
ap.add_argument("--wd", type=float, default=5e-4)
ap.add_argument("--dropout", type=float, default=0.5) # baseline only
ap.add_argument("--self_loop_scale", type=float, default=0.0)
ap.add_argument("--use_a2", action="store_true", help="Use A^2 for the cluster graph.")
ap.add_argument("--seed", type=int, default=42)
ap.add_argument("--debug", action="store_true", help="Print seeds md5, cluster size, K, etc.")
args = ap.parse_args()
torch.manual_seed(args.seed)
ds = Planetoid(root=f"./data/{args.dataset}", name=args.dataset)
data = ds[0]
in_dim, out_dim, n = ds.num_node_features, ds.num_classes, data.num_nodes
if args.variant == "baseline":
model = GCN2(in_dim, args.hidden, out_dim, dropout=args.dropout)
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"Baseline GCN: val={res['val']:.4f} test={res['test']:.4f}")
return
# pool variant
node2cluster, _, info = load_top1_assignment(args.seeds, n, debug=args.debug)
dbg_header = f"seeds_md5={info['json_md5']} top_size={info['top_cluster_size']} K={info['K']}"
model = OneClusterPool(in_dim=in_dim,
hid=args.hidden,
out_dim=out_dim,
node2cluster=node2cluster,
edge_index_node=data.edge_index,
num_nodes=n,
self_loop_scale=args.self_loop_scale,
use_a2_for_clusters=args.use_a2,
debug_header=dbg_header)
res = run_train_eval(model, data, epochs=args.epochs, lr=args.lr, wd=args.wd)
print(f"L-RMC (top-1 pool): val={res['val']:.4f} test={res['test']:.4f}")
if __name__ == "__main__":
main()