clique / src /clique2_ablations_streamsafe.java
qingy2024's picture
Upload folder using huggingface_hub
bf620c6 verified
import java.io.FileReader;
import java.io.IOException;
import java.util.*;
import java.util.function.Consumer;
public class clique2_ablations_streamsafe {
static int n, m;
public static List<SnapshotDTO> main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: java clique2_ablations <epsilon> <inputfile>");
}
final double EPS = Double.parseDouble(args[0]);
Scanner r;
try {
r = new Scanner(new FileReader(args[1]));
} catch (IOException e) {
System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
r = new Scanner(System.in);
}
n = r.nextInt();
m = r.nextInt();
@SuppressWarnings("unchecked")
List<Integer>[] adj = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int a = r.nextInt(), b = r.nextInt();
adj[a].add(b);
adj[b].add(a);
}
r.close();
long t0 = System.nanoTime();
List<SnapshotDTO> res = runLaplacianRMC(adj); // <- optimized O(Mk)
long t1 = System.nanoTime();
// System.out.printf(Locale.US, "%.6f, %d%n", res.bestSL, res.bestRoot);
System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
return res;
}
public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
ArrayList<SnapshotDTO> out = new ArrayList<>();
runLaplacianRMCStreaming(adj1Based, out::add);
return out;
}
/**
* Optimized O(Mk) algorithm using reverse-peeling orientation + pred_sum pushes.
*/
public static List<SnapshotDTO> runLaplacianRMCStreaming(List<Integer>[] adj,
Consumer<SnapshotDTO> sink) {
final int n = adj.length - 1; // infer n from 1-based adjacency
// Phase 1: peeling (same as before)
int[] deg0 = new int[n + 1];
PriorityQueue<Pair> pq = new PriorityQueue<>();
for (int i = 1; i <= n; i++) {
deg0[i] = adj[i].size();
pq.add(new Pair(i, deg0[i]));
}
Deque<Integer> peelStack = new ArrayDeque<>(n); // store nodes only
while (!pq.isEmpty()) {
Pair p = pq.poll();
if (p.degree != deg0[p.node]) continue; // stale
peelStack.push(p.node);
for (int v : adj[p.node]) {
if (deg0[v] > 0) {
deg0[v]--;
pq.add(new Pair(v, deg0[v]));
}
}
deg0[p.node] = 0;
}
// Build addition order and index
int[] addOrder = new int[n];
int[] idx = new int[n + 1];
for (int t = 0; t < n; t++) {
int u = peelStack.pop(); // reverse-peeling (addition order)
addOrder[t] = u;
idx[u] = t;
}
// Phase 1.5: orient edges by idx and sort successors
@SuppressWarnings("unchecked")
ArrayList<Integer>[] succ = new ArrayList[n + 1];
@SuppressWarnings("unchecked")
ArrayList<Integer>[] pred = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) { succ[i] = new ArrayList<>(); pred[i] = new ArrayList<>(); }
for (int u = 1; u <= n; u++) {
for (int v : adj[u]) {
if (u < v) { // handle undirected edge once
if (idx[u] < idx[v]) {
succ[u].add(v);
pred[v].add(u);
} else {
succ[v].add(u);
pred[u].add(v);
}
}
}
}
for (int v = 1; v <= n; v++) {
if (succ[v].size() > 1) {
succ[v].sort(Comparator.comparingInt(w -> idx[w]));
}
// pred[v] need not be sorted
}
// Phase 2: reverse reconstruction with O(k) per edge
DSU dsu = new DSU(n); // tracks parent, size, and Q (double)
int[] deg = new int[n + 1]; // current degree
long[] predSum = new long[n + 1]; // sum of degrees of predecessors
double bestSL = 0.0;
int bestRoot = 0;
// helper: sum of degrees of active successors of v whose idx < T
final SumSucc sumSucc = new SumSucc(succ, idx, deg);
@SuppressWarnings("unchecked")
HashSet<Integer>[] compNodes = new HashSet[n + 1];
for (int i = 1; i <= n; i++) compNodes[i] = new HashSet<>();
List<SnapshotDTO> recon = new ArrayList<>();
for (int u : addOrder) {
dsu.makeIfNeeded(u); // create singleton component
// Single-node score (Q=0)
long Su = 0L; // running sum over degrees of neighbors already attached to u
final int Tu = idx[u];
compNodes[u].add(u);
// connect u to all its predecessors (earlier neighbors)
for (int v : pred[u]) {
long a = deg[u];
long b = deg[v];
// S_v = pred_sum[v] + sum of deg[w] for successors w of v with idx[w] < idx[u]
long Sv = predSum[v] + sumSucc.until(v, Tu);
long dQu = 2L * a * a - 2L * Su + a;
long dQv = 2L * b * b - 2L * Sv + b;
long edgeTerm = (a - b) * (a - b);
int ru = dsu.find(u);
int rv = dsu.find(v);
dsu.Q[ru] += (double) dQu;
dsu.Q[rv] += (double) dQv;
int r;
if (ru != rv) {
r = dsu.union(ru, rv);
dsu.Q[r] += (double) edgeTerm;
int o = (r == ru) ? rv : ru;
compNodes[r].addAll(compNodes[o]);
compNodes[o].clear();
} else {
r = ru;
dsu.Q[r] += (double) edgeTerm;
}
// degree increments
deg[u] += 1;
deg[v] += 1;
// Update sumDeg for the component - THIS WAS MISSING
dsu.sumDeg[r] += 2;
// push +1 to predSum of successors (outdegree ≤ k)
for (int y : succ[u]) predSum[y] += 1;
for (int y : succ[v]) predSum[y] += 1;
// maintain Su: add deg[v] AFTER its increment
Su += deg[v];
}
int r = dsu.find(u);
int[] nodes = compNodes[r].stream().mapToInt(x -> x-1).toArray();
Arrays.sort(nodes);
int compId = dsu.componentId(r);
SnapshotDTO snap = new SnapshotDTO(compId, nodes, nodes.length, dsu.sumDeg[r], dsu.Q[r]);
sink.accept(snap);
}
return recon;
}
// Small helper for successor-degree partial sums
static final class SumSucc {
final ArrayList<Integer>[] succ;
final int[] idx;
final int[] deg;
SumSucc(ArrayList<Integer>[] succ, int[] idx, int[] deg) {
this.succ = succ; this.idx = idx; this.deg = deg;
}
/** Sum of deg[w] over successors w of v with idx[w] < T (succ[v] sorted by idx). */
long until(int v, int T) {
long s = 0L;
final ArrayList<Integer> sv = succ[v];
final int sz = sv.size();
for (int i = 0; i < sz; i++) {
int w = sv.get(i);
if (idx[w] >= T) break;
s += deg[w];
}
return s;
}
}
// Helpers
static class Result {
double bestSL;
int bestRoot;
}
static class Pair implements Comparable<Pair> {
final int node, degree;
Pair(int node, int degree) { this.node = node; this.degree = degree; }
public int compareTo(Pair o) {
if (degree != o.degree) return Integer.compare(degree, o.degree);
return Integer.compare(node, o.node);
}
}
/** DSU that also tracks component Laplacian Q as double. */
static class DSU {
final int[] parent;
final int[] size;
final boolean[] made;
final double[] Q;
final int[] sumDeg;
final int[] compId; // compId[root] > 0 iff the root represents a live component
int nextCompId = 1; // 1-based; 0 means "unassigned"
DSU(int n) {
parent = new int[n + 1];
size = new int[n + 1];
made = new boolean[n + 1];
Q = new double[n + 1];
sumDeg = new int[n + 1];
compId = new int[n + 1];
}
void makeIfNeeded(int v) {
if (!made[v]) {
made[v] = true;
parent[v] = v;
size[v] = 1;
Q[v] = 0.0;
sumDeg[v] = 0;
if (compId[v] == 0) compId[v] = nextCompId++;
}
}
int find(int v) {
if (!made[v]) return v; // treat as isolated until made
if (parent[v] != v) parent[v] = find(parent[v]);
return parent[v];
}
int union(int a, int b) {
makeIfNeeded(a);
makeIfNeeded(b);
int ra = find(a), rb = find(b);
if (ra == rb) return ra;
if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
parent[rb] = ra;
size[ra] += size[rb];
Q[ra] += Q[rb];
sumDeg[ra] += sumDeg[rb];
int aId = compId[ra], bId = compId[rb];
int keep = (aId == 0) ? bId : (bId == 0 ? aId : Math.min(aId, bId));
compId[ra] = keep;
compId[rb] = 0; // retire loser id
return ra;
}
int componentId(int v) { return compId[find(v)]; }
}
public static final class SnapshotDTO {
public final int componentId;
public final int[] nodes; // 0-based ids in the original graph
public final int nC;
public final long sumDegIn; // sum of internal degrees at this snapshot
public final double Q; // d^T L_C d at this snapshot
public SnapshotDTO(int componentId, int[] nodes, int nC, long sumDegIn, double Q) { this.componentId = componentId; this.nodes = nodes; this.nC = nC; this.sumDegIn = sumDegIn; this.Q = Q; }
}
}