SetFit with ibm-granite/granite-embedding-107m-multilingual
This is a SetFit model that can be used for Text Classification. This SetFit model uses ibm-granite/granite-embedding-107m-multilingual as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: ibm-granite/granite-embedding-107m-multilingual
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
summarization |
|
general_knowledge |
|
roleplay |
|
creativity |
|
complex_reasoning |
|
coding |
|
basic_reasoning |
|
tool |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9967 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 馃 Hub
model = SetFitModel.from_pretrained("cnmoro/prompt-router")
# Run inference
preds = model("Get the stock price history of Tesla for the last month.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 13.6792 | 38 |
Label | Training Sample Count |
---|---|
summarization | 160 |
tool | 144 |
general_knowledge | 154 |
roleplay | 145 |
complex_reasoning | 130 |
creativity | 164 |
coding | 152 |
basic_reasoning | 148 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 16)
- max_steps: 2400
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: steps
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.1954 | - |
0.0208 | 50 | 0.2125 | - |
0.0417 | 100 | 0.2131 | - |
0.0625 | 150 | 0.2072 | - |
0.0833 | 200 | 0.2029 | 0.1902 |
0.1042 | 250 | 0.1925 | - |
0.125 | 300 | 0.1764 | - |
0.1458 | 350 | 0.1512 | - |
0.1667 | 400 | 0.1229 | 0.1072 |
0.1875 | 450 | 0.1015 | - |
0.2083 | 500 | 0.0862 | - |
0.2292 | 550 | 0.065 | - |
0.25 | 600 | 0.0505 | 0.0504 |
0.2708 | 650 | 0.0532 | - |
0.2917 | 700 | 0.0427 | - |
0.3125 | 750 | 0.0378 | - |
0.3333 | 800 | 0.0357 | 0.0322 |
0.3542 | 850 | 0.0286 | - |
0.375 | 900 | 0.0381 | - |
0.3958 | 950 | 0.0333 | - |
0.4167 | 1000 | 0.0307 | 0.0235 |
0.4375 | 1050 | 0.0245 | - |
0.4583 | 1100 | 0.0245 | - |
0.4792 | 1150 | 0.0217 | - |
0.5 | 1200 | 0.0193 | 0.0168 |
0.5208 | 1250 | 0.0167 | - |
0.5417 | 1300 | 0.0158 | - |
0.5625 | 1350 | 0.02 | - |
0.5833 | 1400 | 0.0167 | 0.0120 |
0.6042 | 1450 | 0.0176 | - |
0.625 | 1500 | 0.0159 | - |
0.6458 | 1550 | 0.0141 | - |
0.6667 | 1600 | 0.0131 | 0.0094 |
0.6875 | 1650 | 0.0097 | - |
0.7083 | 1700 | 0.0109 | - |
0.7292 | 1750 | 0.0126 | - |
0.75 | 1800 | 0.0115 | 0.0079 |
0.7708 | 1850 | 0.0122 | - |
0.7917 | 1900 | 0.0104 | - |
0.8125 | 1950 | 0.0111 | - |
0.8333 | 2000 | 0.011 | 0.0071 |
0.8542 | 2050 | 0.0095 | - |
0.875 | 2100 | 0.009 | - |
0.8958 | 2150 | 0.0107 | - |
0.9167 | 2200 | 0.0099 | 0.0067 |
0.9375 | 2250 | 0.0084 | - |
0.9583 | 2300 | 0.0086 | - |
0.9792 | 2350 | 0.0089 | - |
1.0 | 2400 | 0.0098 | 0.0066 |
Framework Versions
- Python: 3.11.11
- SetFit: 1.2.0.dev0
- Sentence Transformers: 4.0.2
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support