See axolotl config
axolotl version: 0.12.0.dev0
base_model: NousResearch/Meta-Llama-3-8B
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
datasets:
- path: cfierro/gsm8k_instr
type: alpaca
- path: cfierro/alpaca-en2fr
type: alpaca
dataset_prepared_path: /workspace/axolotl-datasets/llama3-all
val_set_size: 0.05
output_dir: /workspace/axolotl-outputs/llama3-all-lorar2
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 2
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
- embed_tokens
- lm_head
merge_lora: true
wandb_project: weight-diff-ft
wandb_entity: cfierro
wandb_watch: all
wandb_name: llama3-all-lorar2
wandb_log_model: "false"
hub_model_id: coastalcph/llama3-all-lorar2
gradient_accumulation_steps: 4
micro_batch_size: 2
max_steps: 1000 # 8k examples at most
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
early_stopping_patience: 2
eval_steps: 60 # bs=4*2 -> eval every 8*60=480 examples
save_steps: 60 # needed for config validation
save_total_limit: 1
load_best_model_at_end: true
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
llama3-all-lorar2
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the cfierro/gsm8k_instr and the cfierro/alpaca-en2fr datasets. It achieves the following results on the evaluation set:
- Loss: 0.9412
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 1.4447 |
1.0346 | 0.2691 | 60 | 0.9846 |
0.99 | 0.5381 | 120 | 0.9511 |
0.9128 | 0.8072 | 180 | 0.9331 |
0.7667 | 1.0762 | 240 | 0.9394 |
0.7454 | 1.3453 | 300 | 0.9412 |
Framework versions
- PEFT 0.15.2
- Transformers 4.53.1
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for coastalcph/llama3-all-lorar2
Base model
NousResearch/Meta-Llama-3-8B