This is the rut5-base model, with the decoder fine-tuned to recover (approximately) Russian sentences from their LaBSE embeddings. Details are here (in Russian).
It can be used, for example, for:
- Paraphrasing Russian sentences;
- Translating from the 109 LaBSE languages to Russian;
- Summarizing a collection of sentences with a single sentence;
- Interpolating between sentences;
- Few-shot text style transfer (including cross-lingual).
Example code:
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
from transformers.modeling_outputs import BaseModelOutput
enc_tokenizer = AutoTokenizer.from_pretrained('cointegrated/LaBSE-en-ru')
encoder = AutoModel.from_pretrained('cointegrated/LaBSE-en-ru')
dec_tokenizer = AutoTokenizer.from_pretrained('cointegrated/rut5-base-labse-decoder')
decoder = AutoModelForSeq2SeqLM.from_pretrained('cointegrated/rut5-base-labse-decoder')
def encode(texts):
encoded_input = enc_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
with torch.no_grad():
model_output = encoder(**encoded_input.to(encoder.device))
embeddings = model_output.pooler_output
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings
# encode some texts into vectors
embeddings = encode([
"4 декабря 2000 года",
"Давно такого не читала, очень хорошо пишешь!",
"Я тогда не понимала, что происходит, не понимаю и сейчас.",
"London is the capital of Great Britain.",
])
print(embeddings.shape)
# torch.Size([4, 768])
# now try to recover the texts from the vectors
out = decoder.generate(
encoder_outputs=BaseModelOutput(last_hidden_state=embeddings.unsqueeze(1)),
max_length=256,
repetition_penalty=3.0,
)
for tokens in out:
print(dec_tokenizer.decode(tokens, skip_special_tokens=True))
# После 4 декабря 2000 года
# Не так давно, это многое читала!
# Я не понимала того, что происходит сейчас тогда, дальше.
# Британская столица Англии.
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.