legalclassBERT16

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0753

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
1.9089 0.8 500 1.7507
1.6473 1.6 1000 1.5641
1.5486 2.4 1500 1.4464
1.478 3.2 2000 1.3976
1.3893 4.0 2500 1.3375
1.3631 4.8 3000 1.3016
1.296 5.6 3500 1.2723
1.2551 6.4 4000 1.2517
1.2417 7.2 4500 1.1834
1.2099 8.0 5000 1.1796
1.1763 8.8 5500 1.1516
1.1447 9.6 6000 1.1424
1.1298 10.4 6500 1.1258
1.0924 11.2 7000 1.1051
1.1158 12.0 7500 1.1098
1.097 12.8 8000 1.0857
1.0623 13.6 8500 1.0698
1.0505 14.4 9000 1.0803
1.0328 15.2 9500 1.0798
1.0263 16.0 10000 1.0753

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for colaguo/legalclassBERT16

Finetuned
(5304)
this model