LoRA
Paper • 2504.15610 • Published • 1Note 本研究阐述了一种经济高效的方法,用于调整大语言模型(LLMs)以适应留学背景下的学术咨询需求,并应用于低资源文化适应场景。研究采用Mistral-7B-Instruct模型,结合低秩自适应(LoRA)方法和4位量化技术,通过两阶段训练实现领域特异性增强与计算效率的平衡:第一阶段通过Gemini Pro API生成合成数据集进行模型预训练,第二阶段采用StudyAbroadGPT项目人工标注数据集实现情境化响应优化。技术创新包括内存高效量化、参数高效自适应,以及通过Weights & Biases平台实现的持续训练分析。实验结果显示:训练损失降低52.7%,领域特定建议准确率达92%,支持95%的Markdown格式输出,在商用GPU设备上实现每秒100样本的中位处理速率。这些发现验证了指令调优大语言模型在教育咨询(特别是资源有限机构)中的有效性。研究局限性包括模型泛化能力下降和合成数据集的使用,但该框架可扩展至多语言增强和实时咨询流程。未来方向包括整合检索增强生成技术、动态量化方案,以及对接实时学术数据库以提升适应性与准确性。
Train Small, Infer Large: Memory-Efficient LoRA Training for Large Language Models
Paper • 2502.13533 • Published • 11Note 大语言模型(LLMs)凭借卓越的任务泛化能力显著推动了自然语言处理的发展。低秩自适应(LoRA)通过冻结原始模型参数、仅训练轻量级低秩适配矩阵,提供了经济高效的微调方案。然而LoRA的内存占用仍主要受原始模型参数支配。为此,我们提出LoRAM——基于"过参数化LLM中大量神经元虽训练效用低但推理必需"的洞见,构建了一种内存高效的LoRA训练范式。该方案创新性地在剪枝后(小型)模型上训练获得低秩矩阵,经恢复后与原始(大型)模型协同推理;同时通过模型发布方预先实施的最低成本持续预训练,消除剪枝与原始模型间的知识差异。大量实验证明,LoRAM在不同剪枝策略与下游任务中均表现优异。对于700亿参数模型,LoRAM仅需20G显存即可完成训练,替代了LoRA训练所需的A100-80G显卡和全参数微调所需的15块GPU。具体而言,采用结构化剪枝与4位量化结合的QLoRAM方案,在LLaMA-3.1-70B(LLaMA-2-70B)上实现了低秩矩阵训练内存占用的15.81倍(16.95倍)参数存储成本压缩,同时性能显著超越原始LLaMA-3.1-70B(LLaMA-2-70B)和LoRA微调的LLaM
LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models
Paper • 2403.08822 • PublishedNote 为解决大语言模型(LLMs)微调过程中的计算与内存需求问题,我们提出LoRA-SP(流线型部分参数自适应)——一种在低秩自适应(LoRA)框架内利用随机化半选择性参数冻结的新方法。该方法在保留预训练知识与适应任务特定优化之间实现了高效平衡。通过随机化机制,LoRA-SP动态决定参数的更新与冻结,在保证模型性能的前提下显著降低计算与内存开销。我们在多个自然语言处理基准任务上验证了LoRA-SP的效果,结果表明:相较于传统全参数微调及其他参数高效方法,该方法能以显著降低的资源消耗达到同等竞争力性能。LoRA-SP的创新性不仅推动了先进NLP模型在资源受限环境中的部署,也为高效模型自适应策略开辟了新的研究路径。
LoRA-Pro: Are Low-Rank Adapters Properly Optimized?
Paper • 2407.18242 • PublishedNote 低秩自适应(Low-rank adaptation,简称LoRA)已成为基础模型参数高效微调的重要方法。尽管LoRA具有计算效率优势,但其性能仍逊色于全参数微调。本文首先揭示了LoRA与全参数微调优化过程之间的本质关联:从数学角度看,LoRA的优化过程等价于使用低秩梯度进行参数更新的全参数微调。该低秩梯度可通过LoRA中两个低秩矩阵的梯度表示。基于这一发现,我们提出LoRA-Pro方法,通过策略性调整这两个低秩矩阵的梯度,使低秩梯度能更精确地逼近全参数微调梯度,从而缩小LoRA与全参数微调之间的性能差距。此外,我们通过理论推导得出低秩矩阵梯度调整的最优解,并将其应用于LoRA-Pro的微调过程。我们在自然语言理解、对话生成、数学推理、代码生成和图像分类等任务上进行了广泛实验,结果表明LoRA-Pro显著提升了LoRA的性能,有效缩小了与全参数微调的差距。代码已开源在https://github.com/mrflogs/LoRA-Pro。
FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models
Paper • 2410.09432 • Published • 1Note 低秩自适应(LoRA)作为基础模型高效微调的常用技术,在数据分布于多客户端的联邦学习环境中应用时面临独特挑战。现有方法依赖传统联邦平均算法聚合LoRA适配器,导致更新结果存在偏差。为此,我们提出联邦精确LoRA(FedEx-LoRA),通过在预训练冻结权重矩阵上添加残差误差项,以最小计算与通信开销实现精确更新,同时保持LoRA的效率优势。我们在算术推理、常识推理、自然语言理解与生成等任务的不同模型上验证该方法,结果显示其在不同设置下均优于现有最优方法。通过深入分析,我们量化了传统方法更新结果与理想解的显著偏差,证实精确聚合的必要性。该方案凭借其简洁性、高效性与广泛适用性,为基础模型的联邦微调提供了精准有效的解决方案。代码已开源:https://github.com/RaghavSinghal10/fedex-lora。
DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation
Paper • 2502.08905 • PublishedNote 在大型语言模型的下游任务中,参数高效微调(PEFT)方法已得到广泛研究。在现有方法中,低秩自适应(LoRA)因其通过引入低秩矩阵来适配预训练模型的简洁设计而备受青睐。然而,尽管LoRA表现有效,其默认对所有模块分配相同的低秩矩阵,忽略了不同组件的特性差异和贡献度。此外,现有自适应LoRA方案高度依赖直观的重要性评分指标来调整分解矩阵的内部秩。本文提出一种理论支撑的新型PEFT方案——DiffoRA,可实现模块自适应的LoRA配置。该方案的核心在于引入差分自适应矩阵(DAM),用于判定哪些模块最适合且最需要进行微调。我们详细阐述了该矩阵如何影响预训练模型的收敛速度与泛化能力,并通过连续松弛、离散化及权重共享优化等技术构建DAM。我们完整实现了DiffoRA方案,并设计系统化实验进行评估。实验结果表明,在多个基准测试中,我们的方法在所有最先进基线模型上均取得了最优的模型精度。
LoRS: Efficient Low-Rank Adaptation for Sparse Large Language Model
Paper • 2501.08582 • PublishedNote 现有低秩自适应(LoRA)方法在稀疏大语言模型(LLMs)上存在局限性,因其难以有效保持模型稀疏性。近期研究通过引入额外掩码机制来增强LoRA技术,虽成功保持了稀疏性,却导致内存和计算开销显著增加,影响了LoRA方法的效率。针对这一缺陷,我们提出LoRS这一创新方法,旨在实现对稀疏LLMs高效微调的同时,兼顾内存与计算效率。为缓解保持稀疏性带来的巨大资源消耗,我们的方法采用了权重重计算和计算图重构策略。此外,我们还通过改进适配器初始化方式进一步提升LoRS的有效性。这些创新使得微调阶段的内存与计算消耗显著降低,同时性能表现超越现有所有LoRA方法。
SaLoRA: Safety-Alignment Preserved Low-Rank Adaptation
Paper • 2501.01765 • PublishedNote 随着大语言模型技术发展及个性化模型需求增长,参数高效微调方法(如LoRA)凭借其降低计算成本的特性将变得不可或缺。但近期研究警示:LoRA微调可能破坏大语言模型的安全对齐特性,给模型所有者带来重大风险。本文首先通过分析微调前后安全对齐相关特征的变化揭示内在机制,进而提出由安全数据计算的固定安全模块与任务自适应的低秩参数初始化策略(SaLoRA)。不同于传统LoRA方法,SaLoRA能实现针对性模型修改而不破坏原始对齐属性。实验表明,在不同微调任务的各项评估指标中,SaLoRA均优于各类基于适配器的方法。
CLoQ: Enhancing Fine-Tuning of Quantized LLMs via Calibrated LoRA Initialization
Paper • 2501.18475 • PublishedNote 基于低秩自适应(LoRA)的大语言模型(LLM)微调已成为下游任务的高效方法,尤其在计算资源受限的场景中表现突出。然而,由于量化权重表征精度的降低,将LoRA技术应用于量化后的大语言模型面临独特挑战。本文提出CLoQ(面向量化大语言模型的校准化LoRA初始化策略)——一种旨在克服这些挑战的简约初始化方案。该方法通过小型校准数据集量化预训练模型,并为每层计算最优LoRA组件,从而最小化原始模型与量化LoRA模型在初始化阶段的层级差异。核心理论贡献在于推导出可精确闭式求解这些最优LoRA组件的创新方法。我们在文本生成、算术推理和常识推理等任务上验证CLoQ的有效性,实验表明其始终优于现有量化大语言模型的LoRA微调方法,在超低位宽场景中优势尤为显著。
Punica: Multi-Tenant LoRA Serving
Paper • 2310.18547 • Published • 2Note 低秩自适应(LoRA)已成为将预训练模型适配至特定领域的重要方法。我们推出Punica系统——一种支持共享GPU集群中多LoRA模型协同服务的新方案。该系统创新性地设计了CUDA内核,可对不同LoRA模型的GPU操作进行批处理,使得GPU在服务多个异构LoRA模型时仅需保留一份底层预训练模型副本,显存占用与计算效率均获显著提升。我们的调度器实现了共享GPU集群中多租户LoRA服务负载的整合。实验表明:在固定规模GPU集群上,Punica服务多LoRA模型的吞吐量较现有最强LLM服务系统提升12倍,且每token生成仅增加2毫秒延迟。项目已开源:https://github.com/punica-ai/punica。
LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning
Paper • 2305.18403 • Published • 2Note 大型预训练模型(LPMs),如LLaMA和GLM,通过微调在各种任务中展现出了卓越性能。尽管低秩自适应(LoRA)技术能以较低成本对这些LPMs进行下游任务微调,但庞大的模型规模和计算成本仍阻碍其实际部署。神经网络剪枝为压缩LPMs提供了一种解决方案,然而现有针对LPMs设计的剪枝方法与LoRA并不兼容——这既源于其对LPMs采用的非结构化剪枝会阻碍LoRA权重合并,也因其依赖预训练权重的梯度来指导剪枝,从而导致显著的内存开销。为此,我们提出LoRAPrune这一新型框架,能以高内存效率的方式生成精确、紧凑的模型以实现高效推理。具体而言,我们首先设计了基于LoRA的剪枝准则,该准则利用LoRA的权重和梯度(而非预训练权重的梯度)进行重要性评估;继而提出结构化迭代剪枝流程,以消除冗余的通道和注意力头。大量实验结果表明,在LLaMA系列模型上,LoRAPrune的性能显著优于现有方法。例如在50%压缩率下,LoRAPrune相比LLM-Pruner在WikiText2上困惑度降低8.0,在PTB数据集上降低16.05,同时内存使用量减少52.6%。代码将在评审后开源。
LoRA: Low-Rank Adaptation of Large Language Models
Paper • 2106.09685 • Published • 41
ShareLoRA: Parameter Efficient and Robust Large Language Model Fine-tuning via Shared Low-Rank Adaptation
Paper • 2406.10785 • Published • 1Note 本研究提出通过共享低秩自适应(ShareLoRA)来优化预训练语言模型的高效参数微调。该方法在自注意力层的Query/Key/Value组件间实施跨层共享策略,显著减少了训练参数量和内存占用。ShareLoRA不仅保持模型性能,还在RoBERTa、GPT-2、LLaMA等模型的分类与生成任务中展现出强鲁棒性。相比标准LoRA,其通过层间权重共享有效抑制过拟合,并表现出更优的迁移学习能力。研究证实ShareLoRA能全面提升参数效率,同时保障跨架构语言模型的高质量可扩展性能。
SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models
Paper • 2405.16057 • PublishedNote 大语言模型虽推动人工智能发展,但其庞大参数量给微调与部署带来严峻挑战。现有剪枝方法在压缩模型时往往难以保持原始性能。为此,本文提出稀疏保持型高效参数微调方法SPP:通过轻量级可学习行列矩阵优化稀疏权重,完整保留预训练模型的剪枝结构与稀疏度。借助逐元素乘法和残差相加操作,SPP确保训练与权重合并过程中模型稀疏模式和比例的一致性。在LLaMA系列模型上的实验表明,SPP能显著提升不同稀疏模式(非结构化/N:M稀疏)模型的性能——尤其对高稀疏率(如75%)模型效果突出,为稀疏大语言模型的高效微调提供了创新解决方案。代码已开源于https://github.com/Lucky-Lance/SPP。
Increasing Model Capacity for Free: A Simple Strategy for Parameter Efficient Fine-tuning
Paper • 2407.01320 • PublishedNote 近期,针对1750亿参数GPT-3等大型预训练基础模型的下游任务微调备受关注。虽然已有参数高效微调方法被证明无需重训全部参数即可生效,但其性能受限于增量模块的容量——尤其在严格参数预算下。为此,我们提出CapaBoost:通过目标层并行权重模块实现低秩更新的增强策略。该方法对共享权重矩阵施加静态随机掩码,构建多样化权重矩阵集合,在不增加参数的前提下有效提升增量权重秩次。值得注意的是,本方案可无缝集成至多种现有参数高效微调方法。我们在自然语言理解、问答系统和图像分类等多样化下游任务中验证了CapaBoost的优越性。实验结果表明,该方法在零额外计算/存储开销下显著超越基线性能。代码已开源:https://github.com/LINs-lab/CapaBoost。
Sparse Matrix in Large Language Model Fine-tuning
Paper • 2405.15525 • PublishedNote 低秩自适应(LoRA)及其变体因能规避过高计算成本,已成为主流的参数高效微调方案。然而当前PEFT方法与全参数微调(FT)间始终存在精度差距,且该差距尚未被系统研究。本文提出稀疏子矩阵选择方法SMT:通过识别梯度更新中最关键的子矩阵区块并仅更新这些模块,在降低67% GPU内存占用的同时,有效缩小PEFT与FT的性能差距。实验证明,在LLaMA等大模型的多类任务微调中,SMT持续优于LoRA、DoRA等基线方法。我们同时发现:当可训练参数增加时,传统LoRA/DoRA性能会出现平台期甚至下降,而SMT则无此缺陷。
MixLoRA: Enhancing Large Language Models Fine-Tuning with LoRA based Mixture of Experts
Paper • 2404.15159 • PublishedNote 大语言模型虽在NLP任务中表现卓越,但现有微调技术存在局限:LoRA类方法虽缓解GPU内存压力,却在多任务场景中性能受限;混合专家模型(如Mixtral 8x7B)虽展现多任务优势,却对消费级GPU显存提出挑战。为此,我们提出MixLoRA——基于LoRA构建资源高效稀疏MoE的创新方案。该方案在冻结稠密模型的FFN块中插入多组LoRA专家,采用经典top-k路由机制,其独特优势在于:配置独立的自注意力层LoRA适配器,支持任意LoRA变体构建专家,并引入辅助负载均衡损失以优化路由分配。实验表明,MixLoRA在单任务/多任务场景下均取得卓越性能。基于m-LoRA框架实现时,可在24GB消费级GPU上无量化并行微调多个MoE模型,训练过程显存降低41%,延迟减少17%。
Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Paper • 2403.14608 • PublishedNote 大模型虽推动多领域突破性进展,但其空前规模带来巨大计算挑战。为适配特定下游任务(尤其在算力受限平台),参数高效微调(PEFT)成为关键解决方案——通过最小化新增参数与计算资源,实现大模型的高效适配。本综述系统研究各类PEFT算法的性能与计算开销,梳理基于不同PEFT算法的应用案例及常见计算优化技术。除算法视角外,我们更深入考察现实系统设计,分析不同PEFT算法的实施成本。本资源旨在为研究者提供PEFT算法与系统实现的全面指引,详述最新进展与实际应用,成为该领域不可或缺的参考指南。
Mixture of LoRA Experts
Paper • 2404.13628 • PublishedLoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report
Paper • 2405.00732 • Published • 122Adaptive Parameter-Efficient Federated Fine-Tuning on Heterogeneous Devices
Paper • 2412.20004 • PublishedSequential Compression Layers for Efficient Federated Learning in Foundational Models
Paper • 2412.07021 • PublishedFederated Sketching LoRA: On-Device Collaborative Fine-Tuning of Large Language Models
Paper • 2501.19389 • Published • 4ASLoRA: Adaptive Sharing Low-Rank Adaptation Across Layers
Paper • 2412.10135 • PublishedEfficient Deployment of Large Language Models on Resource-constrained Devices
Paper • 2501.02438 • PublishedGradient Weight-normalized Low-rank Projection for Efficient LLM Training
Paper • 2412.19616 • PublishedLow-Rank Adapters Meet Neural Architecture Search for LLM Compression
Paper • 2501.16372 • Published • 10GaLore+: Boosting Low-Rank Adaptation for LLMs with Cross-Head Projection
Paper • 2412.19820 • PublishedOne Head Eight Arms: Block Matrix based Low Rank Adaptation for CLIP-based Few-Shot Learning
Paper • 2501.16720 • PublishedBreaking Memory Limits: Gradient Wavelet Transform Enhances LLMs Training
Paper • 2501.07237 • PublishedDoTA: Weight-Decomposed Tensor Adaptation for Large Language Models
Paper • 2412.20891 • PublishedEDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition
Paper • 2501.12067 • PublishedFineGates: LLMs Finetuning with Compression using Stochastic Gates
Paper • 2412.12951 • PublishedTransformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models
Paper • 2501.08727 • PublishedRefining Salience-Aware Sparse Fine-Tuning Strategies for Language Models
Paper • 2412.13488 • PublishedRandLoRA: Full-rank parameter-efficient fine-tuning of large models
Paper • 2502.00987 • Published • 9TriAdaptLoRA: Brain-Inspired Triangular Adaptive Low-Rank Adaptation for Parameter-Efficient Fine-Tuning
Paper • 2501.08008 • PublishedKaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models
Paper • 2412.06071 • Published • 9Spectral-Aware Low-Rank Adaptation for Speaker Verification
Paper • 2501.03829 • PublishedYou Only Prune Once: Designing Calibration-Free Model Compression With Policy Learning
Paper • 2501.15296 • PublishedAll-in-One Tuning and Structural Pruning for Domain-Specific LLMs
Paper • 2412.14426 • PublishedTrimLLM: Progressive Layer Dropping for Domain-Specific LLMs
Paper • 2412.11242 • Published • 1BoRA: Bi-dimensional Weight-Decomposed Low-Rank Adaptation
Paper • 2412.06441 • PublishedImproving Visual Prompt Tuning for Self-supervised Vision Transformers
Paper • 2306.05067 • Published • 2LoRAShear: Efficient Large Language Model Structured Pruning and Knowledge Recovery
Paper • 2310.18356 • Published • 24FlexiGPT: Pruning and Extending Large Language Models with Low-Rank Weight Sharing
Paper • 2501.14713 • PublishedIn-Context Meta LoRA Generation
Paper • 2501.17635 • PublishedRoRA: Efficient Fine-Tuning of LLM with Reliability Optimization for Rank Adaptation
Paper • 2501.04315 • PublishedModuLoRA: Finetuning 3-Bit LLMs on Consumer GPUs by Integrating with Modular Quantizers
Paper • 2309.16119 • Published • 1VeRA: Vector-based Random Matrix Adaptation
Paper • 2310.11454 • Published • 30A Unified Generative Retriever for Knowledge-Intensive Language Tasks via Prompt Learning
Paper • 2304.14856 • Published • 1In-context Autoencoder for Context Compression in a Large Language Model
Paper • 2307.06945 • Published • 28LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
Paper • 2309.12307 • Published • 89Adapting Language Models to Compress Contexts
Paper • 2305.14788 • Published • 1Comparison between parameter-efficient techniques and full fine-tuning: A case study on multilingual news article classification
Paper • 2308.07282 • Published • 1Composable Sparse Fine-Tuning for Cross-Lingual Transfer
Paper • 2110.07560 • Published • 2Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt
Paper • 2305.11186 • Published • 1Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval
Paper • 2204.02292 • Published • 1NOLA: Networks as Linear Combination of Low Rank Random Basis
Paper • 2310.02556 • Published • 2AdaMoLE: Fine-Tuning Large Language Models with Adaptive Mixture of Low-Rank Adaptation Experts
Paper • 2405.00361 • PublishedMING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
Paper • 2404.09027 • PublishedOLoRA: Orthonormal Low-Rank Adaptation of Large Language Models
Paper • 2406.01775 • Published • 1RoseLoRA: Row and Column-wise Sparse Low-rank Adaptation of Pre-trained Language Model for Knowledge Editing and Fine-tuning
Paper • 2406.10777 • Published • 2MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
Paper • 2403.20320 • PublishedIntuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning
Paper • 2404.08985 • PublishedOwLore: Outlier-weighed Layerwise Sampled Low-Rank Projection for Memory-Efficient LLM Fine-tuning
Paper • 2405.18380 • Published • 1SVFT: Parameter-Efficient Fine-Tuning with Singular Vectors
Paper • 2405.19597 • PublishedWeighted-Reward Preference Optimization for Implicit Model Fusion
Paper • 2412.03187 • Published • 12Badllama 3: removing safety finetuning from Llama 3 in minutes
Paper • 2407.01376 • PublishedLoftQ: LoRA-Fine-Tuning-Aware Quantization for Large Language Models
Paper • 2310.08659 • Published • 28QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models
Paper • 2309.14717 • Published • 44LoRA ensembles for large language model fine-tuning
Paper • 2310.00035 • Published • 2LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models Fine-tuning
Paper • 2308.03303 • Published • 3DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
Paper • 2309.05173 • Published • 1Scaled Prompt-Tuning for Few-Shot Natural Language Generation
Paper • 2309.06759 • Published • 1Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models
Paper • 2308.10462 • Published • 2Make Pre-trained Model Reversible: From Parameter to Memory Efficient Fine-Tuning
Paper • 2306.00477 • Published • 1Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning
Paper • 2303.08566 • Published • 1LLaMA-Reviewer: Advancing Code Review Automation with Large Language Models through Parameter-Efficient Fine-Tuning
Paper • 2308.11148 • Published • 2BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting
Paper • 2212.09535 • Published • 1SCT: A Simple Baseline for Parameter-Efficient Fine-Tuning via Salient Channels
Paper • 2309.08513 • Published • 1LongSkywork: A Training Recipe for Efficiently Extending Context Length in Large Language Models
Paper • 2406.00605 • Published • 2Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning
Paper • 2504.07097 • Published • 1ElaLoRA: Elastic & Learnable Low-Rank Adaptation for Efficient Model Fine-Tuning
Paper • 2504.00254 • Published • 1