squarerun_large_model

This model is a fine-tuned version of google/vit-large-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5150
  • F1 Macro: 0.4837
  • F1 Micro: 0.5909
  • F1 Weighted: 0.5569
  • Precision Macro: 0.5183
  • Precision Micro: 0.5909
  • Precision Weighted: 0.5764
  • Recall Macro: 0.5013
  • Recall Micro: 0.5909
  • Recall Weighted: 0.5909
  • Accuracy: 0.5909

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.917 1.0 29 1.9115 0.1066 0.2197 0.1273 0.0780 0.2197 0.0923 0.1832 0.2197 0.2197 0.2197
1.6762 2.0 58 1.6722 0.2733 0.3561 0.3005 0.3141 0.3561 0.3684 0.3355 0.3561 0.3561 0.3561
1.9664 3.0 87 1.5057 0.3554 0.4545 0.4060 0.3734 0.4545 0.4129 0.3857 0.4545 0.4545 0.4545
1.1934 4.0 116 1.4217 0.3130 0.4091 0.3530 0.3414 0.4091 0.3818 0.3629 0.4091 0.4091 0.4091
1.0968 5.0 145 1.1879 0.4608 0.5758 0.5258 0.4807 0.5758 0.5438 0.5045 0.5758 0.5758 0.5758
1.1313 6.0 174 1.2307 0.4964 0.5530 0.5243 0.5850 0.5530 0.6114 0.5196 0.5530 0.5530 0.5530
1.0807 7.0 203 1.2771 0.4088 0.5303 0.4772 0.5393 0.5303 0.5816 0.4304 0.5303 0.5303 0.5303
1.1825 8.0 232 1.2339 0.4528 0.5682 0.5175 0.5544 0.5682 0.6169 0.4920 0.5682 0.5682 0.5682
0.4454 9.0 261 1.0474 0.6064 0.6970 0.6763 0.6334 0.6970 0.6868 0.6100 0.6970 0.6970 0.6970
0.5439 10.0 290 1.6815 0.4580 0.5152 0.4920 0.5394 0.5152 0.5951 0.4903 0.5152 0.5152 0.5152
0.4256 11.0 319 1.1378 0.5800 0.6667 0.6495 0.5801 0.6667 0.6435 0.5907 0.6667 0.6667 0.6667
0.4968 12.0 348 1.4229 0.5307 0.6136 0.6013 0.5348 0.6136 0.6095 0.5486 0.6136 0.6136 0.6136
0.3408 13.0 377 1.4445 0.5426 0.6288 0.6095 0.5559 0.6288 0.6307 0.5621 0.6288 0.6288 0.6288
0.2914 14.0 406 1.4277 0.6009 0.6515 0.6470 0.7068 0.6515 0.6868 0.5958 0.6515 0.6515 0.6515
0.2003 15.0 435 1.5517 0.5770 0.6288 0.6296 0.5890 0.6288 0.6475 0.5792 0.6288 0.6288 0.6288
0.0871 16.0 464 1.4812 0.5702 0.6515 0.6407 0.5777 0.6515 0.6491 0.5785 0.6515 0.6515 0.6515
0.0352 17.0 493 2.1052 0.5007 0.5985 0.5744 0.5466 0.5985 0.6130 0.5127 0.5985 0.5985 0.5985
0.0101 18.0 522 1.9978 0.5725 0.6212 0.6223 0.6152 0.6212 0.6559 0.5672 0.6212 0.6212 0.6212
0.0035 19.0 551 2.0304 0.5880 0.6439 0.6388 0.6698 0.6439 0.6936 0.5805 0.6439 0.6439 0.6439
0.0013 20.0 580 2.1374 0.5514 0.6364 0.6224 0.6025 0.6364 0.6765 0.5685 0.6364 0.6364 0.6364
0.0589 21.0 609 1.7676 0.5879 0.6439 0.6396 0.5940 0.6439 0.6407 0.5889 0.6439 0.6439 0.6439
0.0263 22.0 638 1.8416 0.5785 0.6439 0.6327 0.6016 0.6439 0.6454 0.5758 0.6439 0.6439 0.6439
0.0028 23.0 667 1.9843 0.6068 0.6667 0.6569 0.6631 0.6667 0.6882 0.6069 0.6667 0.6667 0.6667
0.0006 24.0 696 1.9432 0.6157 0.6742 0.6655 0.6603 0.6742 0.6853 0.6152 0.6742 0.6742 0.6742
0.0004 25.0 725 1.9346 0.6089 0.6667 0.6569 0.6548 0.6667 0.6763 0.6073 0.6667 0.6667 0.6667

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
303M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for corranm/squarerun_large_model

Finetuned
(74)
this model