Whisper Large Ja-Qve - cportoca

This model is a fine-tuned version of openai/whisper-large on the Quechua_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2409
  • Wer: 17.7910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2791 1.3550 1000 0.3439 32.1619
0.137 2.7100 2000 0.2366 26.9532
0.0305 4.0650 3000 0.2266 21.3367
0.0142 5.4201 4000 0.2322 18.5441
0.0048 6.7751 5000 0.2285 18.4500
0.0014 8.1301 6000 0.2378 18.1362
0.0007 9.4851 7000 0.2394 17.6969
0.0004 10.8401 8000 0.2409 17.7910

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
242M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for cportoca/whisper-small-qve-es

Finetuned
(65)
this model

Dataset used to train cportoca/whisper-small-qve-es

Evaluation results