See axolotl config
axolotl version: 0.10.0
base_model: Qwen/Qwen3-32B
# Automatically upload checkpoint and final model to HF
hub_model_id: ctitools/neurocti-qwen3-32b-orkl10k-base-v1
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
chat_template: qwen3
#pretraining_dataset:
# - ctitools/orkl_cleaned_10k
#max_steps: 24576
datasets:
- path: ctitools/orkl_cleaned_10k
type: completion
val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
#load_in_4bit: false
#load_in_8bit: true
adapter: lora
lora_r: 16
lora_alpha: 32
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true
bf16: auto
tf32: true
wandb_project: neurocti-qwen3-32b
wandb_entity: aaronkaplan
wandb_watch:
wandb_name: neurocti-hunting_lora_neurocti-qwen3-32b-orkl10k-base-fb16-r16-lr0.0004-sl4096-e3-v1
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
#optimizer: adamw_torch_4bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0004
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
# multi-gpu setups:
deepspeed: deepspeed_configs/zero2.json
neurocti-qwen3-32b-orkl10k-base-v1
This model is a fine-tuned version of Qwen/Qwen3-32B on the ctitools/orkl_cleaned_10k dataset. It achieves the following results on the evaluation set:
- Loss: 1.9131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 5085
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 2.3042 |
2.0217 | 0.2501 | 424 | 1.8355 |
1.7319 | 0.5003 | 848 | 1.8335 |
1.9541 | 0.7504 | 1272 | 1.8253 |
1.9703 | 1.0006 | 1696 | 1.8291 |
1.8948 | 1.2507 | 2120 | 1.8597 |
1.7536 | 1.5009 | 2544 | 1.9037 |
1.7786 | 1.7510 | 2968 | 1.8944 |
1.7746 | 2.0012 | 3392 | 1.8625 |
1.7543 | 2.2513 | 3816 | 1.8899 |
1.5163 | 2.5015 | 4240 | 1.9114 |
1.6959 | 2.7516 | 4664 | 1.9131 |
Framework versions
- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ctitools/neurocti-qwen3-32b-orkl10k-base-v2
Base model
Qwen/Qwen3-32B