You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.10.0


base_model: Qwen/Qwen3-32B
# Automatically upload checkpoint and final model to HF
hub_model_id: ctitools/neurocti-qwen3-32b-orkl10k-base-v1

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false

chat_template: qwen3
#pretraining_dataset: 
#  - ctitools/orkl_cleaned_10k
#max_steps: 24576

datasets:
  - path: ctitools/orkl_cleaned_10k
    type: completion

val_set_size: 0.01
output_dir: ./outputs/out
dataset_prepared_path: last_run_prepared

sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

#load_in_4bit: false
#load_in_8bit: true
adapter: lora
lora_r: 16
lora_alpha: 32
lora_target_modules:
  - q_proj
  - k_proj
  - v_proj
  - o_proj
  - down_proj
  - up_proj
lora_mlp_kernel: true
lora_qkv_kernel: true
lora_o_kernel: true

bf16: auto
tf32: true

wandb_project: neurocti-qwen3-32b
wandb_entity: aaronkaplan
wandb_watch: 
wandb_name: neurocti-hunting_lora_neurocti-qwen3-32b-orkl10k-base-fb16-r16-lr0.0004-sl4096-e3-v1
wandb_log_model: 

gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
#optimizer: adamw_torch_4bit
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0004

gradient_checkpointing: offload
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:

# multi-gpu setups:
deepspeed: deepspeed_configs/zero2.json


neurocti-qwen3-32b-orkl10k-base-v1

This model is a fine-tuned version of Qwen/Qwen3-32B on the ctitools/orkl_cleaned_10k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9131

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • total_eval_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 5085

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 2.3042
2.0217 0.2501 424 1.8355
1.7319 0.5003 848 1.8335
1.9541 0.7504 1272 1.8253
1.9703 1.0006 1696 1.8291
1.8948 1.2507 2120 1.8597
1.7536 1.5009 2544 1.9037
1.7786 1.7510 2968 1.8944
1.7746 2.0012 3392 1.8625
1.7543 2.2513 3816 1.8899
1.5163 2.5015 4240 1.9114
1.6959 2.7516 4664 1.9131

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ctitools/neurocti-qwen3-32b-orkl10k-base-v2

Base model

Qwen/Qwen3-32B
Adapter
(75)
this model

Dataset used to train ctitools/neurocti-qwen3-32b-orkl10k-base-v2