Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: Qwen/Qwen3-0.6B-Base
hub_model_id: cyberbabooshka/base_noreasoning
wandb_name: base

tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false

num_processes: 64
dataset_processes: 64
dataset_prepared_path: last_run_prepared

chat_template: jinja
chat_template_jinja: >-
  {%- for message in messages %}
    {{- '<|im_start|>' + message.role + '\n' + message.content.lstrip('\n') + '<|im_end|>' + '\n' }}
  {%- endfor %}
  {%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
  {%- endif %}

datasets:
  - path: cyberbabooshka/MNLP_M2_mcqa_dataset
    split: train
    type: chat_template
    field_messages: messages
    train_on_eos: turn
    train_on_eot: turn
    message_property_mappings:
      role: role
      content: content
    roles:
      user:
        - user
      assistant:
        - assistant

test_datasets:
  - path: cyberbabooshka/MNLP_M2_mcqa_dataset
    split: test
    type: chat_template
    field_messages: messages
    train_on_eos: turn
    train_on_eot: turn
    message_property_mappings:
      role: role
      content: content
    roles:
      user:
        - user
      assistant:
        - assistant

output_dir: ./outputs

sequence_len: 2048
batch_flattening: true
sample_packing: false

wandb_project: mnlp
wandb_entity: aleksandr-dremov-epfl
wandb_watch:
wandb_log_model:

gradient_accumulation_steps: 1
eval_batch_size: 16
micro_batch_size: 12

optimizer: ademamix_8bit
weight_decay: 0.01

learning_rate: 0.00001
warmup_steps: 500

wsd_final_lr_factor: 0.0
wsd_init_div_factor: 100
wsd_fract_decay: 0.2
wsd_decay_type: "sqrt"
wsd_sqrt_power: 0.5
wsd_cooldown_start_lr_factor: 1.0

bf16: auto
tf32: false

torch_compile: true
flash_attention: true
gradient_checkpointing: false

resume_from_checkpoint:
auto_resume_from_checkpoints: true

logging_steps: 16
eval_steps: 2000
save_steps: 1000
max_steps: 35000
num_epochs: 20000000
save_total_limit: 2

special_tokens:
  eos_token: "<|im_end|>"
  pad_token: "<|endoftext|>"

eot_tokens:
  - <|im_end|>

plugins:
  - axolotl_wsd.WSDSchedulerPlugin

base_noreasoning

This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the cyberbabooshka/MNLP_M2_mcqa_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7964

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 12
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 24
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADEMAMIX_8BIT and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 35000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 0.9810
0.8508 0.0556 2000 0.8516
0.8877 0.1111 4000 0.8365
0.8851 0.1667 6000 0.8281
0.8193 0.2223 8000 0.8222
0.8298 0.2778 10000 0.8177
0.8439 0.3334 12000 0.8141
0.8364 0.3890 14000 0.8111
0.8015 0.4445 16000 0.8085
0.8112 0.5001 18000 0.8062
0.7972 0.5556 20000 0.8042
0.8264 0.6112 22000 0.8024
0.7728 0.6668 24000 0.8008
0.7762 0.7223 26000 0.7992
0.8185 0.7779 28000 0.7978
0.8235 0.8335 30000 0.7967
0.7812 0.8890 32000 0.7964
0.7872 0.9446 34000 0.7964

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
1,959
Safetensors
Model size
596M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cyberbabooshka/base_noreasoning

Finetuned
(283)
this model
Finetunes
2 models

Dataset used to train cyberbabooshka/base_noreasoning