SentenceTransformer based on WhereIsAI/UAE-Large-V1
This is a sentence-transformers model finetuned from WhereIsAI/UAE-Large-V1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: WhereIsAI/UAE-Large-V1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cyberbabooshka/uae_large_ft1")
# Run inference
sentences = [
'What is the relationship between the smallest perturbation of a matrix and its rank, as established in theorems regarding matrix perturbations?',
'"Suppose $A \\in C^{m \\times n}$ has full column rank (= n). Then $\\min _{\\Delta \\in \\mathbb{C}^{m \\times n}}\\left\\{\\|\\Delta\\|_{2} \\mid A+\\Delta \\text { has rank }<n\\right\\}=\\sigma_{n}(A)$."',
'"If a beam of light enters and then exits the elevator, the observer on Earth and the one accelerating in empty space must observe the same thing, since they cannot distinguish between being on Earth or accelerating in space. The observer in space, who is accelerating, will observe that the beam of light bends as it crosses the elevator... that means that if the path of a beam of light is curved near Earth, it must be because space itself is curved in the presence of a gravitational field!"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6143 |
cosine_accuracy@3 | 0.7357 |
cosine_accuracy@5 | 0.7833 |
cosine_accuracy@10 | 0.8381 |
cosine_precision@1 | 0.6143 |
cosine_precision@3 | 0.2452 |
cosine_precision@5 | 0.1567 |
cosine_precision@10 | 0.0838 |
cosine_recall@1 | 0.6143 |
cosine_recall@3 | 0.7357 |
cosine_recall@5 | 0.7833 |
cosine_recall@10 | 0.8381 |
cosine_ndcg@10 | 0.7235 |
cosine_mrr@10 | 0.6871 |
cosine_map@100 | 0.6925 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,760 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 24.87 tokens
- max: 70 tokens
- min: 11 tokens
- mean: 68.37 tokens
- max: 500 tokens
- Samples:
anchor positive How is a proper coloring of a graph defined in the context of vertices and edges?
"A coloring is called proper if for each edge joining two distinct vertices, the two vertices it joins have different colors."
What is the relationship between the first excited state of the box model and the p orbitals in a hydrogen atom?
"The p orbitals are similar to the first excited state of the box, i.e. $(n_{x},n_{y},n_{z})=(2,1,1)$ is similar to a $p_{x}$ orbital, $(n_{x},n_{y},n_{z})=(1,2,1)$ is similar to a $p_{y}$ orbital and $(n_{x},n_{y},n_{z})=(1,1,2)$ is similar to a $p_{z}$ orbital."
How can the behavior of the derivative ( f'(x) ) indicate the presence of a local maximum or minimum at a critical point ( x=a )?
"If there is a local maximum when ( x=a ), the function must be lower near ( x=a ) than it is right at ( x=a ). If the derivative exists near ( x=a ), this means ( f'(x)>0 ) when ( x ) is near ( a ) and ( x < a ), because the function must 'slope up' just to the left of ( a ). Similarly, ( f'(x) < 0 ) when ( x ) is near ( a ) and ( x>a ), because ( f ) slopes down from the local maximum as we move to the right. Using the same reasoning, if there is a local minimum at ( x=a ), the derivative of ( f ) must be negative just to the left of ( a ) and positive just to the right."
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 420 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 420 samples:
anchor positive type string string details - min: 12 tokens
- mean: 24.97 tokens
- max: 66 tokens
- min: 7 tokens
- mean: 68.52 tokens
- max: 452 tokens
- Samples:
anchor positive What are the two central classes mentioned in the FileSystem framework and what do they represent?
"The class
FileReference
is the most important entry point to the framework." and "FileSystem is a powerful and elegant library to manipulate files."What is the significance of Turing's work in the context of PDE-based models for self-organization of complex systems?
"Turing’s monumental work on the chemical basis of morphogenesis played an important role in igniting researchers’ attention to the PDE-based continuous field models as a mathematical framework to study self-organization of complex systems."
What are the two options for reducing accelerations as discussed in the passage?
"From the above definitions we see that there are really two options for reducing accelerations. We can reduce the amount that velocity changes, or we can increase the time over which the velocity changes (or both)."
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05weight_decay
: 0.05num_train_epochs
: 10warmup_ratio
: 0.1fp16
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.05adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | eval_cosine_ndcg@10 |
---|---|---|---|---|
0 | 0 | - | 0.0971 | 0.6824 |
0.0091 | 1 | 0.1198 | - | - |
0.0182 | 2 | 0.0787 | - | - |
0.0273 | 3 | 0.0614 | - | - |
0.0364 | 4 | 0.138 | - | - |
0.0455 | 5 | 0.1204 | - | - |
0.0545 | 6 | 0.1885 | - | - |
0.0636 | 7 | 0.0475 | - | - |
0.0727 | 8 | 0.1358 | - | - |
0.0818 | 9 | 0.1666 | - | - |
0.0909 | 10 | 0.0737 | - | - |
0.1 | 11 | 0.0997 | - | - |
0.1091 | 12 | 0.0795 | - | - |
0.1182 | 13 | 0.1071 | - | - |
0.1273 | 14 | 0.1224 | - | - |
0.1364 | 15 | 0.0499 | - | - |
0.1455 | 16 | 0.0806 | - | - |
0.1545 | 17 | 0.0353 | - | - |
0.1636 | 18 | 0.0542 | - | - |
0.1727 | 19 | 0.0412 | - | - |
0.1818 | 20 | 0.1375 | - | - |
0.1909 | 21 | 0.1124 | - | - |
0.2 | 22 | 0.0992 | - | - |
0.2091 | 23 | 0.0285 | - | - |
0.2182 | 24 | 0.0337 | - | - |
0.2273 | 25 | 0.0737 | - | - |
0.2364 | 26 | 0.2011 | - | - |
0.2455 | 27 | 0.0241 | - | - |
0.2545 | 28 | 0.1319 | - | - |
0.2636 | 29 | 0.0104 | - | - |
0.2727 | 30 | 0.0162 | - | - |
0.2818 | 31 | 0.3061 | - | - |
0.2909 | 32 | 0.0422 | - | - |
0.3 | 33 | 0.1893 | - | - |
0.3091 | 34 | 0.0207 | - | - |
0.3182 | 35 | 0.0744 | - | - |
0.3273 | 36 | 0.0246 | - | - |
0.3364 | 37 | 0.0079 | - | - |
0.3455 | 38 | 0.0256 | - | - |
0.3545 | 39 | 0.0224 | - | - |
0.3636 | 40 | 0.0151 | - | - |
0.3727 | 41 | 0.0738 | - | - |
0.3818 | 42 | 0.0239 | - | - |
0.3909 | 43 | 0.0169 | - | - |
0.4 | 44 | 0.0152 | - | - |
0.4091 | 45 | 0.0244 | - | - |
0.4182 | 46 | 0.1708 | - | - |
0.4273 | 47 | 0.0146 | - | - |
0.4364 | 48 | 0.1367 | - | - |
0.4455 | 49 | 0.049 | - | - |
0.4545 | 50 | 0.0211 | - | - |
0.4636 | 51 | 0.0135 | - | - |
0.4727 | 52 | 0.0668 | - | - |
0.4818 | 53 | 0.087 | - | - |
0.4909 | 54 | 0.0046 | - | - |
0.5 | 55 | 0.0032 | - | - |
0.5091 | 56 | 0.0133 | - | - |
0.5182 | 57 | 0.0109 | - | - |
0.5273 | 58 | 0.0396 | - | - |
0.5364 | 59 | 0.0291 | - | - |
0.5455 | 60 | 0.0299 | - | - |
0.5545 | 61 | 0.0134 | - | - |
0.5636 | 62 | 0.0135 | - | - |
0.5727 | 63 | 0.0049 | - | - |
0.5818 | 64 | 0.0199 | - | - |
0.5909 | 65 | 0.1533 | - | - |
0.6 | 66 | 0.3639 | - | - |
0.6091 | 67 | 0.0652 | - | - |
0.6182 | 68 | 0.0315 | - | - |
0.6273 | 69 | 0.0403 | - | - |
0.6364 | 70 | 0.011 | - | - |
0.6455 | 71 | 0.0265 | - | - |
0.6545 | 72 | 0.1146 | - | - |
0.6636 | 73 | 0.0932 | - | - |
0.6727 | 74 | 0.0234 | - | - |
0.6818 | 75 | 0.0581 | - | - |
0.6909 | 76 | 0.0132 | - | - |
0.7 | 77 | 0.1183 | - | - |
0.7091 | 78 | 0.0913 | - | - |
0.7182 | 79 | 0.0262 | - | - |
0.7273 | 80 | 0.0262 | - | - |
0.7364 | 81 | 0.0159 | - | - |
0.7455 | 82 | 0.0407 | - | - |
0.7545 | 83 | 0.0294 | - | - |
0.7636 | 84 | 0.0567 | - | - |
0.7727 | 85 | 0.0959 | - | - |
0.7818 | 86 | 0.033 | - | - |
0.7909 | 87 | 0.0234 | - | - |
0.8 | 88 | 0.0088 | - | - |
0.8091 | 89 | 0.0249 | - | - |
0.8182 | 90 | 0.0276 | - | - |
0.8273 | 91 | 0.0936 | - | - |
0.8364 | 92 | 0.0067 | - | - |
0.8455 | 93 | 0.0064 | - | - |
0.8545 | 94 | 0.0654 | - | - |
0.8636 | 95 | 0.0048 | - | - |
0.8727 | 96 | 0.0087 | - | - |
0.8818 | 97 | 0.0115 | - | - |
0.8909 | 98 | 0.0092 | - | - |
0.9 | 99 | 0.0514 | - | - |
0.9091 | 100 | 0.1856 | - | - |
0.9182 | 101 | 0.0364 | - | - |
0.9273 | 102 | 0.0455 | - | - |
0.9364 | 103 | 0.0057 | - | - |
0.9455 | 104 | 0.0038 | - | - |
0.9545 | 105 | 0.0209 | - | - |
0.9636 | 106 | 0.0247 | - | - |
0.9727 | 107 | 0.0735 | - | - |
0.9818 | 108 | 0.004 | - | - |
0.9909 | 109 | 0.0174 | - | - |
1.0 | 110 | 0.018 | 0.0282 | 0.7093 |
1.0091 | 111 | 0.0187 | - | - |
1.0182 | 112 | 0.0116 | - | - |
1.0273 | 113 | 0.0043 | - | - |
1.0364 | 114 | 0.0059 | - | - |
1.0455 | 115 | 0.0067 | - | - |
1.0545 | 116 | 0.0093 | - | - |
1.0636 | 117 | 0.0821 | - | - |
1.0727 | 118 | 0.0097 | - | - |
1.0818 | 119 | 0.0141 | - | - |
1.0909 | 120 | 0.0202 | - | - |
1.1 | 121 | 0.0034 | - | - |
1.1091 | 122 | 0.0025 | - | - |
1.1182 | 123 | 0.006 | - | - |
1.1273 | 124 | 0.004 | - | - |
1.1364 | 125 | 0.003 | - | - |
1.1455 | 126 | 0.0399 | - | - |
1.1545 | 127 | 0.0026 | - | - |
1.1636 | 128 | 0.0043 | - | - |
1.1727 | 129 | 0.1317 | - | - |
1.1818 | 130 | 0.0024 | - | - |
1.1909 | 131 | 0.0027 | - | - |
1.2 | 132 | 0.076 | - | - |
1.2091 | 133 | 0.0302 | - | - |
1.2182 | 134 | 0.0026 | - | - |
1.2273 | 135 | 0.1611 | - | - |
1.2364 | 136 | 0.0413 | - | - |
1.2455 | 137 | 0.0118 | - | - |
1.2545 | 138 | 0.0042 | - | - |
1.2636 | 139 | 0.0401 | - | - |
1.2727 | 140 | 0.0036 | - | - |
1.2818 | 141 | 0.0034 | - | - |
1.2909 | 142 | 0.0026 | - | - |
1.3 | 143 | 0.0044 | - | - |
1.3091 | 144 | 0.0024 | - | - |
1.3182 | 145 | 0.0036 | - | - |
1.3273 | 146 | 0.0242 | - | - |
1.3364 | 147 | 0.0015 | - | - |
1.3455 | 148 | 0.1008 | - | - |
1.3545 | 149 | 0.0057 | - | - |
1.3636 | 150 | 0.0062 | - | - |
1.3727 | 151 | 0.0048 | - | - |
1.3818 | 152 | 0.0026 | - | - |
1.3909 | 153 | 0.0045 | - | - |
1.4 | 154 | 0.0139 | - | - |
1.4091 | 155 | 0.0017 | - | - |
1.4182 | 156 | 0.0012 | - | - |
1.4273 | 157 | 0.0009 | - | - |
1.4364 | 158 | 0.006 | - | - |
1.4455 | 159 | 0.0618 | - | - |
1.4545 | 160 | 0.0889 | - | - |
1.4636 | 161 | 0.0034 | - | - |
1.4727 | 162 | 0.0184 | - | - |
1.4818 | 163 | 0.0035 | - | - |
1.4909 | 164 | 0.002 | - | - |
1.5 | 165 | 0.0115 | - | - |
1.5091 | 166 | 0.0008 | - | - |
1.5182 | 167 | 0.0113 | - | - |
1.5273 | 168 | 0.01 | - | - |
1.5364 | 169 | 0.0177 | - | - |
1.5455 | 170 | 0.0059 | - | - |
1.5545 | 171 | 0.0123 | - | - |
1.5636 | 172 | 0.0103 | - | - |
1.5727 | 173 | 0.008 | - | - |
1.5818 | 174 | 0.002 | - | - |
1.5909 | 175 | 0.0039 | - | - |
1.6 | 176 | 0.0174 | - | - |
1.6091 | 177 | 0.0191 | - | - |
1.6182 | 178 | 0.002 | - | - |
1.6273 | 179 | 0.0009 | - | - |
1.6364 | 180 | 0.0021 | - | - |
1.6455 | 181 | 0.0011 | - | - |
1.6545 | 182 | 0.0027 | - | - |
1.6636 | 183 | 0.0005 | - | - |
1.6727 | 184 | 0.0026 | - | - |
1.6818 | 185 | 0.0047 | - | - |
1.6909 | 186 | 0.0033 | - | - |
1.7 | 187 | 0.0402 | - | - |
1.7091 | 188 | 0.0128 | - | - |
1.7182 | 189 | 0.01 | - | - |
1.7273 | 190 | 0.0057 | - | - |
1.7364 | 191 | 0.0133 | - | - |
1.7455 | 192 | 0.0099 | - | - |
1.7545 | 193 | 0.1022 | - | - |
1.7636 | 194 | 0.0223 | - | - |
1.7727 | 195 | 0.0037 | - | - |
1.7818 | 196 | 0.0073 | - | - |
1.7909 | 197 | 0.0212 | - | - |
1.8 | 198 | 0.0231 | - | - |
1.8091 | 199 | 0.0016 | - | - |
1.8182 | 200 | 0.0017 | - | - |
1.8273 | 201 | 0.0035 | - | - |
1.8364 | 202 | 0.0165 | - | - |
1.8455 | 203 | 0.0131 | - | - |
1.8545 | 204 | 0.0032 | - | - |
1.8636 | 205 | 0.0075 | - | - |
1.8727 | 206 | 0.0438 | - | - |
1.8818 | 207 | 0.0022 | - | - |
1.8909 | 208 | 0.0501 | - | - |
1.9 | 209 | 0.0121 | - | - |
1.9091 | 210 | 0.0036 | - | - |
1.9182 | 211 | 0.0041 | - | - |
1.9273 | 212 | 0.0048 | - | - |
1.9364 | 213 | 0.0159 | - | - |
1.9455 | 214 | 0.0036 | - | - |
1.9545 | 215 | 0.0035 | - | - |
1.9636 | 216 | 0.004 | - | - |
1.9727 | 217 | 0.0039 | - | - |
1.9818 | 218 | 0.0177 | - | - |
1.9909 | 219 | 0.0042 | - | - |
2.0 | 220 | 0.0044 | 0.0230 | 0.7225 |
2.0091 | 221 | 0.0339 | - | - |
2.0182 | 222 | 0.0032 | - | - |
2.0273 | 223 | 0.0133 | - | - |
2.0364 | 224 | 0.0031 | - | - |
2.0455 | 225 | 0.0025 | - | - |
2.0545 | 226 | 0.0039 | - | - |
2.0636 | 227 | 0.0011 | - | - |
2.0727 | 228 | 0.0021 | - | - |
2.0818 | 229 | 0.0591 | - | - |
2.0909 | 230 | 0.0011 | - | - |
2.1 | 231 | 0.0008 | - | - |
2.1091 | 232 | 0.0014 | - | - |
2.1182 | 233 | 0.0057 | - | - |
2.1273 | 234 | 0.0044 | - | - |
2.1364 | 235 | 0.001 | - | - |
2.1455 | 236 | 0.0009 | - | - |
2.1545 | 237 | 0.0028 | - | - |
2.1636 | 238 | 0.0076 | - | - |
2.1727 | 239 | 0.0018 | - | - |
2.1818 | 240 | 0.0022 | - | - |
2.1909 | 241 | 0.0029 | - | - |
2.2 | 242 | 0.0004 | - | - |
2.2091 | 243 | 0.0025 | - | - |
2.2182 | 244 | 0.0013 | - | - |
2.2273 | 245 | 0.0487 | - | - |
2.2364 | 246 | 0.0016 | - | - |
2.2455 | 247 | 0.0023 | - | - |
2.2545 | 248 | 0.0038 | - | - |
2.2636 | 249 | 0.003 | - | - |
2.2727 | 250 | 0.0017 | - | - |
2.2818 | 251 | 0.0056 | - | - |
2.2909 | 252 | 0.0036 | - | - |
2.3 | 253 | 0.0016 | - | - |
2.3091 | 254 | 0.0021 | - | - |
2.3182 | 255 | 0.0019 | - | - |
2.3273 | 256 | 0.001 | - | - |
2.3364 | 257 | 0.0017 | - | - |
2.3455 | 258 | 0.0027 | - | - |
2.3545 | 259 | 0.0039 | - | - |
2.3636 | 260 | 0.0011 | - | - |
2.3727 | 261 | 0.0248 | - | - |
2.3818 | 262 | 0.0219 | - | - |
2.3909 | 263 | 0.0015 | - | - |
2.4 | 264 | 0.0009 | - | - |
2.4091 | 265 | 0.0013 | - | - |
2.4182 | 266 | 0.0049 | - | - |
2.4273 | 267 | 0.0073 | - | - |
2.4364 | 268 | 0.007 | - | - |
2.4455 | 269 | 0.0024 | - | - |
2.4545 | 270 | 0.0008 | - | - |
2.4636 | 271 | 0.001 | - | - |
2.4727 | 272 | 0.0016 | - | - |
2.4818 | 273 | 0.0007 | - | - |
2.4909 | 274 | 0.0091 | - | - |
2.5 | 275 | 0.0127 | - | - |
2.5091 | 276 | 0.0013 | - | - |
2.5182 | 277 | 0.001 | - | - |
2.5273 | 278 | 0.0006 | - | - |
2.5364 | 279 | 0.005 | - | - |
2.5455 | 280 | 0.0154 | - | - |
2.5545 | 281 | 0.0015 | - | - |
2.5636 | 282 | 0.0229 | - | - |
2.5727 | 283 | 0.0026 | - | - |
2.5818 | 284 | 0.0008 | - | - |
2.5909 | 285 | 0.0024 | - | - |
2.6 | 286 | 0.0012 | - | - |
2.6091 | 287 | 0.0748 | - | - |
2.6182 | 288 | 0.0086 | - | - |
2.6273 | 289 | 0.0013 | - | - |
2.6364 | 290 | 0.0089 | - | - |
2.6455 | 291 | 0.0011 | - | - |
2.6545 | 292 | 0.0096 | - | - |
2.6636 | 293 | 0.1416 | - | - |
2.6727 | 294 | 0.0005 | - | - |
2.6818 | 295 | 0.0021 | - | - |
2.6909 | 296 | 0.0014 | - | - |
2.7 | 297 | 0.0097 | - | - |
2.7091 | 298 | 0.0014 | - | - |
2.7182 | 299 | 0.0009 | - | - |
2.7273 | 300 | 0.0016 | - | - |
2.7364 | 301 | 0.0166 | - | - |
2.7455 | 302 | 0.0028 | - | - |
2.7545 | 303 | 0.0014 | - | - |
2.7636 | 304 | 0.0018 | - | - |
2.7727 | 305 | 0.0059 | - | - |
2.7818 | 306 | 0.0012 | - | - |
2.7909 | 307 | 0.0008 | - | - |
2.8 | 308 | 0.0007 | - | - |
2.8091 | 309 | 0.0038 | - | - |
2.8182 | 310 | 0.0012 | - | - |
2.8273 | 311 | 0.0091 | - | - |
2.8364 | 312 | 0.0111 | - | - |
2.8455 | 313 | 0.0016 | - | - |
2.8545 | 314 | 0.0089 | - | - |
2.8636 | 315 | 0.0071 | - | - |
2.8727 | 316 | 0.0012 | - | - |
2.8818 | 317 | 0.0251 | - | - |
2.8909 | 318 | 0.0017 | - | - |
2.9 | 319 | 0.0006 | - | - |
2.9091 | 320 | 0.0014 | - | - |
2.9182 | 321 | 0.0011 | - | - |
2.9273 | 322 | 0.0084 | - | - |
2.9364 | 323 | 0.0055 | - | - |
2.9455 | 324 | 0.0011 | - | - |
2.9545 | 325 | 0.0017 | - | - |
2.9636 | 326 | 0.0008 | - | - |
2.9727 | 327 | 0.0082 | - | - |
2.9818 | 328 | 0.0006 | - | - |
2.9909 | 329 | 0.0008 | - | - |
3.0 | 330 | 0.0022 | 0.0275 | 0.6950 |
3.0091 | 331 | 0.0007 | - | - |
3.0182 | 332 | 0.0012 | - | - |
3.0273 | 333 | 0.0007 | - | - |
3.0364 | 334 | 0.0038 | - | - |
3.0455 | 335 | 0.0006 | - | - |
3.0545 | 336 | 0.0012 | - | - |
3.0636 | 337 | 0.0873 | - | - |
3.0727 | 338 | 0.0022 | - | - |
3.0818 | 339 | 0.0004 | - | - |
3.0909 | 340 | 0.001 | - | - |
3.1 | 341 | 0.0002 | - | - |
3.1091 | 342 | 0.0069 | - | - |
3.1182 | 343 | 0.0009 | - | - |
3.1273 | 344 | 0.0101 | - | - |
3.1364 | 345 | 0.0022 | - | - |
3.1455 | 346 | 0.009 | - | - |
3.1545 | 347 | 0.0018 | - | - |
3.1636 | 348 | 0.0018 | - | - |
3.1727 | 349 | 0.0045 | - | - |
3.1818 | 350 | 0.029 | - | - |
3.1909 | 351 | 0.0036 | - | - |
3.2 | 352 | 0.0015 | - | - |
3.2091 | 353 | 0.0021 | - | - |
3.2182 | 354 | 0.0103 | - | - |
3.2273 | 355 | 0.0005 | - | - |
3.2364 | 356 | 0.0133 | - | - |
3.2455 | 357 | 0.0015 | - | - |
3.2545 | 358 | 0.001 | - | - |
3.2636 | 359 | 0.0024 | - | - |
3.2727 | 360 | 0.0052 | - | - |
3.2818 | 361 | 0.0032 | - | - |
3.2909 | 362 | 0.0024 | - | - |
3.3 | 363 | 0.0008 | - | - |
3.3091 | 364 | 0.0035 | - | - |
3.3182 | 365 | 0.0012 | - | - |
3.3273 | 366 | 0.0049 | - | - |
3.3364 | 367 | 0.0452 | - | - |
3.3455 | 368 | 0.0017 | - | - |
3.3545 | 369 | 0.0112 | - | - |
3.3636 | 370 | 0.0011 | - | - |
3.3727 | 371 | 0.0016 | - | - |
3.3818 | 372 | 0.0015 | - | - |
3.3909 | 373 | 0.004 | - | - |
3.4 | 374 | 0.0074 | - | - |
3.4091 | 375 | 0.0005 | - | - |
3.4182 | 376 | 0.0007 | - | - |
3.4273 | 377 | 0.0014 | - | - |
3.4364 | 378 | 0.0097 | - | - |
3.4455 | 379 | 0.0026 | - | - |
3.4545 | 380 | 0.0022 | - | - |
3.4636 | 381 | 0.001 | - | - |
3.4727 | 382 | 0.0004 | - | - |
3.4818 | 383 | 0.004 | - | - |
3.4909 | 384 | 0.0017 | - | - |
3.5 | 385 | 0.0014 | - | - |
3.5091 | 386 | 0.001 | - | - |
3.5182 | 387 | 0.0047 | - | - |
3.5273 | 388 | 0.0061 | - | - |
3.5364 | 389 | 0.0017 | - | - |
3.5455 | 390 | 0.0024 | - | - |
3.5545 | 391 | 0.0021 | - | - |
3.5636 | 392 | 0.0007 | - | - |
3.5727 | 393 | 0.0009 | - | - |
3.5818 | 394 | 0.0006 | - | - |
3.5909 | 395 | 0.0038 | - | - |
3.6 | 396 | 0.0006 | - | - |
3.6091 | 397 | 0.0011 | - | - |
3.6182 | 398 | 0.001 | - | - |
3.6273 | 399 | 0.0014 | - | - |
3.6364 | 400 | 0.0007 | - | - |
3.6455 | 401 | 0.0052 | - | - |
3.6545 | 402 | 0.0008 | - | - |
3.6636 | 403 | 0.0009 | - | - |
3.6727 | 404 | 0.0017 | - | - |
3.6818 | 405 | 0.0028 | - | - |
3.6909 | 406 | 0.0044 | - | - |
3.7 | 407 | 0.0009 | - | - |
3.7091 | 408 | 0.0134 | - | - |
3.7182 | 409 | 0.001 | - | - |
3.7273 | 410 | 0.0044 | - | - |
3.7364 | 411 | 0.0138 | - | - |
3.7455 | 412 | 0.0032 | - | - |
3.7545 | 413 | 0.0004 | - | - |
3.7636 | 414 | 0.0065 | - | - |
3.7727 | 415 | 0.0007 | - | - |
3.7818 | 416 | 0.0008 | - | - |
3.7909 | 417 | 0.0007 | - | - |
3.8 | 418 | 0.0018 | - | - |
3.8091 | 419 | 0.001 | - | - |
3.8182 | 420 | 0.0305 | - | - |
3.8273 | 421 | 0.001 | - | - |
3.8364 | 422 | 0.0011 | - | - |
3.8455 | 423 | 0.0004 | - | - |
3.8545 | 424 | 0.003 | - | - |
3.8636 | 425 | 0.002 | - | - |
3.8727 | 426 | 0.0018 | - | - |
3.8818 | 427 | 0.0968 | - | - |
3.8909 | 428 | 0.002 | - | - |
3.9 | 429 | 0.002 | - | - |
3.9091 | 430 | 0.0156 | - | - |
3.9182 | 431 | 0.0059 | - | - |
3.9273 | 432 | 0.001 | - | - |
3.9364 | 433 | 0.0153 | - | - |
3.9455 | 434 | 0.0013 | - | - |
3.9545 | 435 | 0.0003 | - | - |
3.9636 | 436 | 0.001 | - | - |
3.9727 | 437 | 0.0005 | - | - |
3.9818 | 438 | 0.0012 | - | - |
3.9909 | 439 | 0.0109 | - | - |
4.0 | 440 | 0.1597 | 0.0211 | 0.7235 |
4.0091 | 441 | 0.0027 | - | - |
4.0182 | 442 | 0.0007 | - | - |
4.0273 | 443 | 0.0089 | - | - |
4.0364 | 444 | 0.0007 | - | - |
4.0455 | 445 | 0.005 | - | - |
4.0545 | 446 | 0.0019 | - | - |
4.0636 | 447 | 0.0007 | - | - |
4.0727 | 448 | 0.0008 | - | - |
4.0818 | 449 | 0.002 | - | - |
4.0909 | 450 | 0.043 | - | - |
4.1 | 451 | 0.0273 | - | - |
4.1091 | 452 | 0.0009 | - | - |
4.1182 | 453 | 0.0011 | - | - |
4.1273 | 454 | 0.0007 | - | - |
4.1364 | 455 | 0.0062 | - | - |
4.1455 | 456 | 0.0004 | - | - |
4.1545 | 457 | 0.0008 | - | - |
4.1636 | 458 | 0.0128 | - | - |
4.1727 | 459 | 0.0012 | - | - |
4.1818 | 460 | 0.0013 | - | - |
4.1909 | 461 | 0.0009 | - | - |
4.2 | 462 | 0.0011 | - | - |
4.2091 | 463 | 0.0336 | - | - |
4.2182 | 464 | 0.0018 | - | - |
4.2273 | 465 | 0.0009 | - | - |
4.2364 | 466 | 0.0049 | - | - |
4.2455 | 467 | 0.0012 | - | - |
4.2545 | 468 | 0.001 | - | - |
4.2636 | 469 | 0.0024 | - | - |
4.2727 | 470 | 0.0063 | - | - |
4.2818 | 471 | 0.0008 | - | - |
4.2909 | 472 | 0.0793 | - | - |
4.3 | 473 | 0.0016 | - | - |
4.3091 | 474 | 0.0016 | - | - |
4.3182 | 475 | 0.0043 | - | - |
4.3273 | 476 | 0.036 | - | - |
4.3364 | 477 | 0.002 | - | - |
4.3455 | 478 | 0.0019 | - | - |
4.3545 | 479 | 0.0012 | - | - |
4.3636 | 480 | 0.0059 | - | - |
4.3727 | 481 | 0.0017 | - | - |
4.3818 | 482 | 0.0004 | - | - |
4.3909 | 483 | 0.0014 | - | - |
4.4 | 484 | 0.0143 | - | - |
4.4091 | 485 | 0.0014 | - | - |
4.4182 | 486 | 0.0009 | - | - |
4.4273 | 487 | 0.0027 | - | - |
4.4364 | 488 | 0.0017 | - | - |
4.4455 | 489 | 0.0007 | - | - |
4.4545 | 490 | 0.0008 | - | - |
4.4636 | 491 | 0.0008 | - | - |
4.4727 | 492 | 0.0014 | - | - |
4.4818 | 493 | 0.0011 | - | - |
4.4909 | 494 | 0.0013 | - | - |
4.5 | 495 | 0.0016 | - | - |
4.5091 | 496 | 0.001 | - | - |
4.5182 | 497 | 0.0008 | - | - |
4.5273 | 498 | 0.001 | - | - |
4.5364 | 499 | 0.0019 | - | - |
4.5455 | 500 | 0.0008 | - | - |
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 23
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for cyberbabooshka/uae_large_ft1
Base model
WhereIsAI/UAE-Large-V1Evaluation results
- Cosine Accuracy@1 on evalself-reported0.614
- Cosine Accuracy@3 on evalself-reported0.736
- Cosine Accuracy@5 on evalself-reported0.783
- Cosine Accuracy@10 on evalself-reported0.838
- Cosine Precision@1 on evalself-reported0.614
- Cosine Precision@3 on evalself-reported0.245
- Cosine Precision@5 on evalself-reported0.157
- Cosine Precision@10 on evalself-reported0.084
- Cosine Recall@1 on evalself-reported0.614
- Cosine Recall@3 on evalself-reported0.736