File size: 62,811 Bytes
9eb1473 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1760
- loss:MultipleNegativesRankingLoss
base_model: WhereIsAI/UAE-Large-V1
widget:
- source_sentence: What is the relationship between the x- and y-coordinates in a
linear relationship, and how can this relationship be represented visually on
a graph?
sentences:
- '"A linear relationship is a relationship between variables such that when plotted
on a coordinate plane, the points lie on a line." Additionally, "You can think
of a line, then, as a collection of an infinite number of individual points that
share the same mathematical relationship."'
- '"A ''model'' is a situation-specific description of a phenomenon based on a theory,
that allows us to make a specific prediction." and "In physics, it is particularly
important to distinguish between these two terms. A model provides an immediate
understanding of something based on a theory."'
- '"Use capital letters to denote sets, $A,B, C, X, Y$ etc. [...] if you stick with
these conventions people reading your work (including the person marking your
exams) will know — ''Oh $A$ is that set they are talking about'' and ''$a$ is
an element of that set.''"'
- source_sentence: What factors influence whether thin-film interference results in
constructive or destructive interference?
sentences:
- '"For nonrelativistic velocities, an observer moving along at the same velocity
as an Ohmic conductor measures the usual Ohm''s law in his reference frame, $\textbf{J}_{f}''
= \sigma \textbf{E}''$... the current density in all inertial frames is the same
so that (3) in (4) gives us the generalized Ohm''s law as $\textbf{J}_{f}'' =
\textbf{J}_{f} = \sigma (\textbf{E} + \textbf{v} \times \textbf{B})$ where v is
the velocity of the conductor."'
- '"Thin-film interference thus depends on film thickness, the wavelength of light,
and the refractive indices."'
- '"A summary of the properties of concave mirrors is shown below: • converging
• real image • inverted • image in front of mirror. A summary of the properties
of convex mirrors is shown below: • diverging • virtual image • upright • image
behind mirror."'
- source_sentence: How do non-conservative forces affect the total energy change in
a system undergoing an irreversible process?
sentences:
- '"Energy is conserved but some mechanical energy has been transferred into nonrecoverable
energy $W_{\mathrm{nc}}$. We shall refer to processes in which there is non-zero
nonrecoverable energy as irreversible processes."'
- '"Hamilton’s equations give $2s$ first-order differential equations for $p_{k},q_{k}$
for each of the $s=n-m$ degrees of freedom. Lagrange’s equations give $s$ second-order
differential equations for the $s$ independent generalized coordinates $q_{k},\dot{q}_{k}."'
- '"Determine what happens as $\Delta x$ approaches 0."'
- source_sentence: What are the conditions under which a mutant virus is likely to
replace a wildtype virus in a population, according to the SIR model of disease
dynamics?
sentences:
- '"In the limit of high Reynolds number, viscosity disappears from the problem
and the drag force should not depend on viscosity. This reasoning contains several
subtle untruths, yet its conclusion is mostly correct. ... To make \( F \) independent
of viscosity, \( F \) must be independent of Reynolds number!"'
- '"A more mathematically rigorous name would be the renormalization monoid."'
- '"I^{\prime}$ increases exponentially if $\frac{\beta^{\prime}(d+c+\gamma)}{\beta}-\left(d+c^{\prime}+\gamma^{\prime}\right)>0$
or after some elementary algebra, $\frac{\beta^{\prime}}{d+c^{\prime}+\gamma^{\prime}}>\frac{\beta}{d+c+\gamma}$."
Additionally, "our result (4.6.8) suggests that endemic viruses (or other microorganisms)
will tend to evolve (i) to be more easily transmitted between people $\left(\beta^{\prime}>\beta\right)
;$ (ii) to make people sick longer $\left(\gamma^{\prime}<\gamma\right)$, and;
(iii) to be less deadly $c^{\prime}<c$."'
- source_sentence: What is the relationship between the smallest perturbation of a
matrix and its rank, as established in theorems regarding matrix perturbations?
sentences:
- '"Suppose $A \in C^{m \times n}$ has full column rank (= n). Then $\min _{\Delta
\in \mathbb{C}^{m \times n}}\left\{\|\Delta\|_{2} \mid A+\Delta \text { has rank
}<n\right\}=\sigma_{n}(A)$."'
- '"Complementary angles have measures that add up to 90 degrees."'
- '"If a beam of light enters and then exits the elevator, the observer on Earth
and the one accelerating in empty space must observe the same thing, since they
cannot distinguish between being on Earth or accelerating in space. The observer
in space, who is accelerating, will observe that the beam of light bends as it
crosses the elevator... that means that if the path of a beam of light is curved
near Earth, it must be because space itself is curved in the presence of a gravitational
field!"'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on WhereIsAI/UAE-Large-V1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: eval
type: eval
metrics:
- type: cosine_accuracy@1
value: 0.6142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7357142857142858
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7833333333333333
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8380952380952381
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24523809523809523
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15666666666666665
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08380952380952378
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7357142857142858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7833333333333333
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8380952380952381
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7234956246301203
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6871305744520029
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6925322242948972
name: Cosine Map@100
---
# SentenceTransformer based on WhereIsAI/UAE-Large-V1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) <!-- at revision f4264cd240f4e46a527f9f57a70cda6c2a12d248 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cyberbabooshka/uae_large_ft1")
# Run inference
sentences = [
'What is the relationship between the smallest perturbation of a matrix and its rank, as established in theorems regarding matrix perturbations?',
'"Suppose $A \\in C^{m \\times n}$ has full column rank (= n). Then $\\min _{\\Delta \\in \\mathbb{C}^{m \\times n}}\\left\\{\\|\\Delta\\|_{2} \\mid A+\\Delta \\text { has rank }<n\\right\\}=\\sigma_{n}(A)$."',
'"If a beam of light enters and then exits the elevator, the observer on Earth and the one accelerating in empty space must observe the same thing, since they cannot distinguish between being on Earth or accelerating in space. The observer in space, who is accelerating, will observe that the beam of light bends as it crosses the elevator... that means that if the path of a beam of light is curved near Earth, it must be because space itself is curved in the presence of a gravitational field!"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6143 |
| cosine_accuracy@3 | 0.7357 |
| cosine_accuracy@5 | 0.7833 |
| cosine_accuracy@10 | 0.8381 |
| cosine_precision@1 | 0.6143 |
| cosine_precision@3 | 0.2452 |
| cosine_precision@5 | 0.1567 |
| cosine_precision@10 | 0.0838 |
| cosine_recall@1 | 0.6143 |
| cosine_recall@3 | 0.7357 |
| cosine_recall@5 | 0.7833 |
| cosine_recall@10 | 0.8381 |
| **cosine_ndcg@10** | **0.7235** |
| cosine_mrr@10 | 0.6871 |
| cosine_map@100 | 0.6925 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,760 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 24.87 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 68.37 tokens</li><li>max: 500 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How is a proper coloring of a graph defined in the context of vertices and edges?</code> | <code>"A coloring is called proper if for each edge joining two distinct vertices, the two vertices it joins have different colors."</code> |
| <code>What is the relationship between the first excited state of the box model and the p orbitals in a hydrogen atom?</code> | <code>"The p orbitals are similar to the first excited state of the box, i.e. $(n_{x},n_{y},n_{z})=(2,1,1)$ is similar to a $p_{x}$ orbital, $(n_{x},n_{y},n_{z})=(1,2,1)$ is similar to a $p_{y}$ orbital and $(n_{x},n_{y},n_{z})=(1,1,2)$ is similar to a $p_{z}$ orbital."</code> |
| <code>How can the behavior of the derivative \( f'(x) \) indicate the presence of a local maximum or minimum at a critical point \( x=a \)?</code> | <code>"If there is a local maximum when \( x=a \), the function must be lower near \( x=a \) than it is right at \( x=a \). If the derivative exists near \( x=a \), this means \( f'(x)>0 \) when \( x \) is near \( a \) and \( x < a \), because the function must 'slope up' just to the left of \( a \). Similarly, \( f'(x) < 0 \) when \( x \) is near \( a \) and \( x>a \), because \( f \) slopes down from the local maximum as we move to the right. Using the same reasoning, if there is a local minimum at \( x=a \), the derivative of \( f \) must be negative just to the left of \( a \) and positive just to the right."</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 420 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 420 samples:
| | anchor | positive |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 24.97 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 68.52 tokens</li><li>max: 452 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are the two central classes mentioned in the FileSystem framework and what do they represent?</code> | <code>"The class `FileReference` is the most important entry point to the framework." and "FileSystem is a powerful and elegant library to manipulate files."</code> |
| <code>What is the significance of Turing's work in the context of PDE-based models for self-organization of complex systems?</code> | <code>"Turing’s monumental work on the chemical basis of morphogenesis played an important role in igniting researchers’ attention to the PDE-based continuous field models as a mathematical framework to study self-organization of complex systems."</code> |
| <code>What are the two options for reducing accelerations as discussed in the passage?</code> | <code>"From the above definitions we see that there are really two options for reducing accelerations. We can reduce the amount that velocity changes, or we can increase the time over which the velocity changes (or both)."</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.05
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | eval_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-------------------:|
| 0 | 0 | - | 0.0971 | 0.6824 |
| 0.0091 | 1 | 0.1198 | - | - |
| 0.0182 | 2 | 0.0787 | - | - |
| 0.0273 | 3 | 0.0614 | - | - |
| 0.0364 | 4 | 0.138 | - | - |
| 0.0455 | 5 | 0.1204 | - | - |
| 0.0545 | 6 | 0.1885 | - | - |
| 0.0636 | 7 | 0.0475 | - | - |
| 0.0727 | 8 | 0.1358 | - | - |
| 0.0818 | 9 | 0.1666 | - | - |
| 0.0909 | 10 | 0.0737 | - | - |
| 0.1 | 11 | 0.0997 | - | - |
| 0.1091 | 12 | 0.0795 | - | - |
| 0.1182 | 13 | 0.1071 | - | - |
| 0.1273 | 14 | 0.1224 | - | - |
| 0.1364 | 15 | 0.0499 | - | - |
| 0.1455 | 16 | 0.0806 | - | - |
| 0.1545 | 17 | 0.0353 | - | - |
| 0.1636 | 18 | 0.0542 | - | - |
| 0.1727 | 19 | 0.0412 | - | - |
| 0.1818 | 20 | 0.1375 | - | - |
| 0.1909 | 21 | 0.1124 | - | - |
| 0.2 | 22 | 0.0992 | - | - |
| 0.2091 | 23 | 0.0285 | - | - |
| 0.2182 | 24 | 0.0337 | - | - |
| 0.2273 | 25 | 0.0737 | - | - |
| 0.2364 | 26 | 0.2011 | - | - |
| 0.2455 | 27 | 0.0241 | - | - |
| 0.2545 | 28 | 0.1319 | - | - |
| 0.2636 | 29 | 0.0104 | - | - |
| 0.2727 | 30 | 0.0162 | - | - |
| 0.2818 | 31 | 0.3061 | - | - |
| 0.2909 | 32 | 0.0422 | - | - |
| 0.3 | 33 | 0.1893 | - | - |
| 0.3091 | 34 | 0.0207 | - | - |
| 0.3182 | 35 | 0.0744 | - | - |
| 0.3273 | 36 | 0.0246 | - | - |
| 0.3364 | 37 | 0.0079 | - | - |
| 0.3455 | 38 | 0.0256 | - | - |
| 0.3545 | 39 | 0.0224 | - | - |
| 0.3636 | 40 | 0.0151 | - | - |
| 0.3727 | 41 | 0.0738 | - | - |
| 0.3818 | 42 | 0.0239 | - | - |
| 0.3909 | 43 | 0.0169 | - | - |
| 0.4 | 44 | 0.0152 | - | - |
| 0.4091 | 45 | 0.0244 | - | - |
| 0.4182 | 46 | 0.1708 | - | - |
| 0.4273 | 47 | 0.0146 | - | - |
| 0.4364 | 48 | 0.1367 | - | - |
| 0.4455 | 49 | 0.049 | - | - |
| 0.4545 | 50 | 0.0211 | - | - |
| 0.4636 | 51 | 0.0135 | - | - |
| 0.4727 | 52 | 0.0668 | - | - |
| 0.4818 | 53 | 0.087 | - | - |
| 0.4909 | 54 | 0.0046 | - | - |
| 0.5 | 55 | 0.0032 | - | - |
| 0.5091 | 56 | 0.0133 | - | - |
| 0.5182 | 57 | 0.0109 | - | - |
| 0.5273 | 58 | 0.0396 | - | - |
| 0.5364 | 59 | 0.0291 | - | - |
| 0.5455 | 60 | 0.0299 | - | - |
| 0.5545 | 61 | 0.0134 | - | - |
| 0.5636 | 62 | 0.0135 | - | - |
| 0.5727 | 63 | 0.0049 | - | - |
| 0.5818 | 64 | 0.0199 | - | - |
| 0.5909 | 65 | 0.1533 | - | - |
| 0.6 | 66 | 0.3639 | - | - |
| 0.6091 | 67 | 0.0652 | - | - |
| 0.6182 | 68 | 0.0315 | - | - |
| 0.6273 | 69 | 0.0403 | - | - |
| 0.6364 | 70 | 0.011 | - | - |
| 0.6455 | 71 | 0.0265 | - | - |
| 0.6545 | 72 | 0.1146 | - | - |
| 0.6636 | 73 | 0.0932 | - | - |
| 0.6727 | 74 | 0.0234 | - | - |
| 0.6818 | 75 | 0.0581 | - | - |
| 0.6909 | 76 | 0.0132 | - | - |
| 0.7 | 77 | 0.1183 | - | - |
| 0.7091 | 78 | 0.0913 | - | - |
| 0.7182 | 79 | 0.0262 | - | - |
| 0.7273 | 80 | 0.0262 | - | - |
| 0.7364 | 81 | 0.0159 | - | - |
| 0.7455 | 82 | 0.0407 | - | - |
| 0.7545 | 83 | 0.0294 | - | - |
| 0.7636 | 84 | 0.0567 | - | - |
| 0.7727 | 85 | 0.0959 | - | - |
| 0.7818 | 86 | 0.033 | - | - |
| 0.7909 | 87 | 0.0234 | - | - |
| 0.8 | 88 | 0.0088 | - | - |
| 0.8091 | 89 | 0.0249 | - | - |
| 0.8182 | 90 | 0.0276 | - | - |
| 0.8273 | 91 | 0.0936 | - | - |
| 0.8364 | 92 | 0.0067 | - | - |
| 0.8455 | 93 | 0.0064 | - | - |
| 0.8545 | 94 | 0.0654 | - | - |
| 0.8636 | 95 | 0.0048 | - | - |
| 0.8727 | 96 | 0.0087 | - | - |
| 0.8818 | 97 | 0.0115 | - | - |
| 0.8909 | 98 | 0.0092 | - | - |
| 0.9 | 99 | 0.0514 | - | - |
| 0.9091 | 100 | 0.1856 | - | - |
| 0.9182 | 101 | 0.0364 | - | - |
| 0.9273 | 102 | 0.0455 | - | - |
| 0.9364 | 103 | 0.0057 | - | - |
| 0.9455 | 104 | 0.0038 | - | - |
| 0.9545 | 105 | 0.0209 | - | - |
| 0.9636 | 106 | 0.0247 | - | - |
| 0.9727 | 107 | 0.0735 | - | - |
| 0.9818 | 108 | 0.004 | - | - |
| 0.9909 | 109 | 0.0174 | - | - |
| 1.0 | 110 | 0.018 | 0.0282 | 0.7093 |
| 1.0091 | 111 | 0.0187 | - | - |
| 1.0182 | 112 | 0.0116 | - | - |
| 1.0273 | 113 | 0.0043 | - | - |
| 1.0364 | 114 | 0.0059 | - | - |
| 1.0455 | 115 | 0.0067 | - | - |
| 1.0545 | 116 | 0.0093 | - | - |
| 1.0636 | 117 | 0.0821 | - | - |
| 1.0727 | 118 | 0.0097 | - | - |
| 1.0818 | 119 | 0.0141 | - | - |
| 1.0909 | 120 | 0.0202 | - | - |
| 1.1 | 121 | 0.0034 | - | - |
| 1.1091 | 122 | 0.0025 | - | - |
| 1.1182 | 123 | 0.006 | - | - |
| 1.1273 | 124 | 0.004 | - | - |
| 1.1364 | 125 | 0.003 | - | - |
| 1.1455 | 126 | 0.0399 | - | - |
| 1.1545 | 127 | 0.0026 | - | - |
| 1.1636 | 128 | 0.0043 | - | - |
| 1.1727 | 129 | 0.1317 | - | - |
| 1.1818 | 130 | 0.0024 | - | - |
| 1.1909 | 131 | 0.0027 | - | - |
| 1.2 | 132 | 0.076 | - | - |
| 1.2091 | 133 | 0.0302 | - | - |
| 1.2182 | 134 | 0.0026 | - | - |
| 1.2273 | 135 | 0.1611 | - | - |
| 1.2364 | 136 | 0.0413 | - | - |
| 1.2455 | 137 | 0.0118 | - | - |
| 1.2545 | 138 | 0.0042 | - | - |
| 1.2636 | 139 | 0.0401 | - | - |
| 1.2727 | 140 | 0.0036 | - | - |
| 1.2818 | 141 | 0.0034 | - | - |
| 1.2909 | 142 | 0.0026 | - | - |
| 1.3 | 143 | 0.0044 | - | - |
| 1.3091 | 144 | 0.0024 | - | - |
| 1.3182 | 145 | 0.0036 | - | - |
| 1.3273 | 146 | 0.0242 | - | - |
| 1.3364 | 147 | 0.0015 | - | - |
| 1.3455 | 148 | 0.1008 | - | - |
| 1.3545 | 149 | 0.0057 | - | - |
| 1.3636 | 150 | 0.0062 | - | - |
| 1.3727 | 151 | 0.0048 | - | - |
| 1.3818 | 152 | 0.0026 | - | - |
| 1.3909 | 153 | 0.0045 | - | - |
| 1.4 | 154 | 0.0139 | - | - |
| 1.4091 | 155 | 0.0017 | - | - |
| 1.4182 | 156 | 0.0012 | - | - |
| 1.4273 | 157 | 0.0009 | - | - |
| 1.4364 | 158 | 0.006 | - | - |
| 1.4455 | 159 | 0.0618 | - | - |
| 1.4545 | 160 | 0.0889 | - | - |
| 1.4636 | 161 | 0.0034 | - | - |
| 1.4727 | 162 | 0.0184 | - | - |
| 1.4818 | 163 | 0.0035 | - | - |
| 1.4909 | 164 | 0.002 | - | - |
| 1.5 | 165 | 0.0115 | - | - |
| 1.5091 | 166 | 0.0008 | - | - |
| 1.5182 | 167 | 0.0113 | - | - |
| 1.5273 | 168 | 0.01 | - | - |
| 1.5364 | 169 | 0.0177 | - | - |
| 1.5455 | 170 | 0.0059 | - | - |
| 1.5545 | 171 | 0.0123 | - | - |
| 1.5636 | 172 | 0.0103 | - | - |
| 1.5727 | 173 | 0.008 | - | - |
| 1.5818 | 174 | 0.002 | - | - |
| 1.5909 | 175 | 0.0039 | - | - |
| 1.6 | 176 | 0.0174 | - | - |
| 1.6091 | 177 | 0.0191 | - | - |
| 1.6182 | 178 | 0.002 | - | - |
| 1.6273 | 179 | 0.0009 | - | - |
| 1.6364 | 180 | 0.0021 | - | - |
| 1.6455 | 181 | 0.0011 | - | - |
| 1.6545 | 182 | 0.0027 | - | - |
| 1.6636 | 183 | 0.0005 | - | - |
| 1.6727 | 184 | 0.0026 | - | - |
| 1.6818 | 185 | 0.0047 | - | - |
| 1.6909 | 186 | 0.0033 | - | - |
| 1.7 | 187 | 0.0402 | - | - |
| 1.7091 | 188 | 0.0128 | - | - |
| 1.7182 | 189 | 0.01 | - | - |
| 1.7273 | 190 | 0.0057 | - | - |
| 1.7364 | 191 | 0.0133 | - | - |
| 1.7455 | 192 | 0.0099 | - | - |
| 1.7545 | 193 | 0.1022 | - | - |
| 1.7636 | 194 | 0.0223 | - | - |
| 1.7727 | 195 | 0.0037 | - | - |
| 1.7818 | 196 | 0.0073 | - | - |
| 1.7909 | 197 | 0.0212 | - | - |
| 1.8 | 198 | 0.0231 | - | - |
| 1.8091 | 199 | 0.0016 | - | - |
| 1.8182 | 200 | 0.0017 | - | - |
| 1.8273 | 201 | 0.0035 | - | - |
| 1.8364 | 202 | 0.0165 | - | - |
| 1.8455 | 203 | 0.0131 | - | - |
| 1.8545 | 204 | 0.0032 | - | - |
| 1.8636 | 205 | 0.0075 | - | - |
| 1.8727 | 206 | 0.0438 | - | - |
| 1.8818 | 207 | 0.0022 | - | - |
| 1.8909 | 208 | 0.0501 | - | - |
| 1.9 | 209 | 0.0121 | - | - |
| 1.9091 | 210 | 0.0036 | - | - |
| 1.9182 | 211 | 0.0041 | - | - |
| 1.9273 | 212 | 0.0048 | - | - |
| 1.9364 | 213 | 0.0159 | - | - |
| 1.9455 | 214 | 0.0036 | - | - |
| 1.9545 | 215 | 0.0035 | - | - |
| 1.9636 | 216 | 0.004 | - | - |
| 1.9727 | 217 | 0.0039 | - | - |
| 1.9818 | 218 | 0.0177 | - | - |
| 1.9909 | 219 | 0.0042 | - | - |
| 2.0 | 220 | 0.0044 | 0.0230 | 0.7225 |
| 2.0091 | 221 | 0.0339 | - | - |
| 2.0182 | 222 | 0.0032 | - | - |
| 2.0273 | 223 | 0.0133 | - | - |
| 2.0364 | 224 | 0.0031 | - | - |
| 2.0455 | 225 | 0.0025 | - | - |
| 2.0545 | 226 | 0.0039 | - | - |
| 2.0636 | 227 | 0.0011 | - | - |
| 2.0727 | 228 | 0.0021 | - | - |
| 2.0818 | 229 | 0.0591 | - | - |
| 2.0909 | 230 | 0.0011 | - | - |
| 2.1 | 231 | 0.0008 | - | - |
| 2.1091 | 232 | 0.0014 | - | - |
| 2.1182 | 233 | 0.0057 | - | - |
| 2.1273 | 234 | 0.0044 | - | - |
| 2.1364 | 235 | 0.001 | - | - |
| 2.1455 | 236 | 0.0009 | - | - |
| 2.1545 | 237 | 0.0028 | - | - |
| 2.1636 | 238 | 0.0076 | - | - |
| 2.1727 | 239 | 0.0018 | - | - |
| 2.1818 | 240 | 0.0022 | - | - |
| 2.1909 | 241 | 0.0029 | - | - |
| 2.2 | 242 | 0.0004 | - | - |
| 2.2091 | 243 | 0.0025 | - | - |
| 2.2182 | 244 | 0.0013 | - | - |
| 2.2273 | 245 | 0.0487 | - | - |
| 2.2364 | 246 | 0.0016 | - | - |
| 2.2455 | 247 | 0.0023 | - | - |
| 2.2545 | 248 | 0.0038 | - | - |
| 2.2636 | 249 | 0.003 | - | - |
| 2.2727 | 250 | 0.0017 | - | - |
| 2.2818 | 251 | 0.0056 | - | - |
| 2.2909 | 252 | 0.0036 | - | - |
| 2.3 | 253 | 0.0016 | - | - |
| 2.3091 | 254 | 0.0021 | - | - |
| 2.3182 | 255 | 0.0019 | - | - |
| 2.3273 | 256 | 0.001 | - | - |
| 2.3364 | 257 | 0.0017 | - | - |
| 2.3455 | 258 | 0.0027 | - | - |
| 2.3545 | 259 | 0.0039 | - | - |
| 2.3636 | 260 | 0.0011 | - | - |
| 2.3727 | 261 | 0.0248 | - | - |
| 2.3818 | 262 | 0.0219 | - | - |
| 2.3909 | 263 | 0.0015 | - | - |
| 2.4 | 264 | 0.0009 | - | - |
| 2.4091 | 265 | 0.0013 | - | - |
| 2.4182 | 266 | 0.0049 | - | - |
| 2.4273 | 267 | 0.0073 | - | - |
| 2.4364 | 268 | 0.007 | - | - |
| 2.4455 | 269 | 0.0024 | - | - |
| 2.4545 | 270 | 0.0008 | - | - |
| 2.4636 | 271 | 0.001 | - | - |
| 2.4727 | 272 | 0.0016 | - | - |
| 2.4818 | 273 | 0.0007 | - | - |
| 2.4909 | 274 | 0.0091 | - | - |
| 2.5 | 275 | 0.0127 | - | - |
| 2.5091 | 276 | 0.0013 | - | - |
| 2.5182 | 277 | 0.001 | - | - |
| 2.5273 | 278 | 0.0006 | - | - |
| 2.5364 | 279 | 0.005 | - | - |
| 2.5455 | 280 | 0.0154 | - | - |
| 2.5545 | 281 | 0.0015 | - | - |
| 2.5636 | 282 | 0.0229 | - | - |
| 2.5727 | 283 | 0.0026 | - | - |
| 2.5818 | 284 | 0.0008 | - | - |
| 2.5909 | 285 | 0.0024 | - | - |
| 2.6 | 286 | 0.0012 | - | - |
| 2.6091 | 287 | 0.0748 | - | - |
| 2.6182 | 288 | 0.0086 | - | - |
| 2.6273 | 289 | 0.0013 | - | - |
| 2.6364 | 290 | 0.0089 | - | - |
| 2.6455 | 291 | 0.0011 | - | - |
| 2.6545 | 292 | 0.0096 | - | - |
| 2.6636 | 293 | 0.1416 | - | - |
| 2.6727 | 294 | 0.0005 | - | - |
| 2.6818 | 295 | 0.0021 | - | - |
| 2.6909 | 296 | 0.0014 | - | - |
| 2.7 | 297 | 0.0097 | - | - |
| 2.7091 | 298 | 0.0014 | - | - |
| 2.7182 | 299 | 0.0009 | - | - |
| 2.7273 | 300 | 0.0016 | - | - |
| 2.7364 | 301 | 0.0166 | - | - |
| 2.7455 | 302 | 0.0028 | - | - |
| 2.7545 | 303 | 0.0014 | - | - |
| 2.7636 | 304 | 0.0018 | - | - |
| 2.7727 | 305 | 0.0059 | - | - |
| 2.7818 | 306 | 0.0012 | - | - |
| 2.7909 | 307 | 0.0008 | - | - |
| 2.8 | 308 | 0.0007 | - | - |
| 2.8091 | 309 | 0.0038 | - | - |
| 2.8182 | 310 | 0.0012 | - | - |
| 2.8273 | 311 | 0.0091 | - | - |
| 2.8364 | 312 | 0.0111 | - | - |
| 2.8455 | 313 | 0.0016 | - | - |
| 2.8545 | 314 | 0.0089 | - | - |
| 2.8636 | 315 | 0.0071 | - | - |
| 2.8727 | 316 | 0.0012 | - | - |
| 2.8818 | 317 | 0.0251 | - | - |
| 2.8909 | 318 | 0.0017 | - | - |
| 2.9 | 319 | 0.0006 | - | - |
| 2.9091 | 320 | 0.0014 | - | - |
| 2.9182 | 321 | 0.0011 | - | - |
| 2.9273 | 322 | 0.0084 | - | - |
| 2.9364 | 323 | 0.0055 | - | - |
| 2.9455 | 324 | 0.0011 | - | - |
| 2.9545 | 325 | 0.0017 | - | - |
| 2.9636 | 326 | 0.0008 | - | - |
| 2.9727 | 327 | 0.0082 | - | - |
| 2.9818 | 328 | 0.0006 | - | - |
| 2.9909 | 329 | 0.0008 | - | - |
| 3.0 | 330 | 0.0022 | 0.0275 | 0.6950 |
| 3.0091 | 331 | 0.0007 | - | - |
| 3.0182 | 332 | 0.0012 | - | - |
| 3.0273 | 333 | 0.0007 | - | - |
| 3.0364 | 334 | 0.0038 | - | - |
| 3.0455 | 335 | 0.0006 | - | - |
| 3.0545 | 336 | 0.0012 | - | - |
| 3.0636 | 337 | 0.0873 | - | - |
| 3.0727 | 338 | 0.0022 | - | - |
| 3.0818 | 339 | 0.0004 | - | - |
| 3.0909 | 340 | 0.001 | - | - |
| 3.1 | 341 | 0.0002 | - | - |
| 3.1091 | 342 | 0.0069 | - | - |
| 3.1182 | 343 | 0.0009 | - | - |
| 3.1273 | 344 | 0.0101 | - | - |
| 3.1364 | 345 | 0.0022 | - | - |
| 3.1455 | 346 | 0.009 | - | - |
| 3.1545 | 347 | 0.0018 | - | - |
| 3.1636 | 348 | 0.0018 | - | - |
| 3.1727 | 349 | 0.0045 | - | - |
| 3.1818 | 350 | 0.029 | - | - |
| 3.1909 | 351 | 0.0036 | - | - |
| 3.2 | 352 | 0.0015 | - | - |
| 3.2091 | 353 | 0.0021 | - | - |
| 3.2182 | 354 | 0.0103 | - | - |
| 3.2273 | 355 | 0.0005 | - | - |
| 3.2364 | 356 | 0.0133 | - | - |
| 3.2455 | 357 | 0.0015 | - | - |
| 3.2545 | 358 | 0.001 | - | - |
| 3.2636 | 359 | 0.0024 | - | - |
| 3.2727 | 360 | 0.0052 | - | - |
| 3.2818 | 361 | 0.0032 | - | - |
| 3.2909 | 362 | 0.0024 | - | - |
| 3.3 | 363 | 0.0008 | - | - |
| 3.3091 | 364 | 0.0035 | - | - |
| 3.3182 | 365 | 0.0012 | - | - |
| 3.3273 | 366 | 0.0049 | - | - |
| 3.3364 | 367 | 0.0452 | - | - |
| 3.3455 | 368 | 0.0017 | - | - |
| 3.3545 | 369 | 0.0112 | - | - |
| 3.3636 | 370 | 0.0011 | - | - |
| 3.3727 | 371 | 0.0016 | - | - |
| 3.3818 | 372 | 0.0015 | - | - |
| 3.3909 | 373 | 0.004 | - | - |
| 3.4 | 374 | 0.0074 | - | - |
| 3.4091 | 375 | 0.0005 | - | - |
| 3.4182 | 376 | 0.0007 | - | - |
| 3.4273 | 377 | 0.0014 | - | - |
| 3.4364 | 378 | 0.0097 | - | - |
| 3.4455 | 379 | 0.0026 | - | - |
| 3.4545 | 380 | 0.0022 | - | - |
| 3.4636 | 381 | 0.001 | - | - |
| 3.4727 | 382 | 0.0004 | - | - |
| 3.4818 | 383 | 0.004 | - | - |
| 3.4909 | 384 | 0.0017 | - | - |
| 3.5 | 385 | 0.0014 | - | - |
| 3.5091 | 386 | 0.001 | - | - |
| 3.5182 | 387 | 0.0047 | - | - |
| 3.5273 | 388 | 0.0061 | - | - |
| 3.5364 | 389 | 0.0017 | - | - |
| 3.5455 | 390 | 0.0024 | - | - |
| 3.5545 | 391 | 0.0021 | - | - |
| 3.5636 | 392 | 0.0007 | - | - |
| 3.5727 | 393 | 0.0009 | - | - |
| 3.5818 | 394 | 0.0006 | - | - |
| 3.5909 | 395 | 0.0038 | - | - |
| 3.6 | 396 | 0.0006 | - | - |
| 3.6091 | 397 | 0.0011 | - | - |
| 3.6182 | 398 | 0.001 | - | - |
| 3.6273 | 399 | 0.0014 | - | - |
| 3.6364 | 400 | 0.0007 | - | - |
| 3.6455 | 401 | 0.0052 | - | - |
| 3.6545 | 402 | 0.0008 | - | - |
| 3.6636 | 403 | 0.0009 | - | - |
| 3.6727 | 404 | 0.0017 | - | - |
| 3.6818 | 405 | 0.0028 | - | - |
| 3.6909 | 406 | 0.0044 | - | - |
| 3.7 | 407 | 0.0009 | - | - |
| 3.7091 | 408 | 0.0134 | - | - |
| 3.7182 | 409 | 0.001 | - | - |
| 3.7273 | 410 | 0.0044 | - | - |
| 3.7364 | 411 | 0.0138 | - | - |
| 3.7455 | 412 | 0.0032 | - | - |
| 3.7545 | 413 | 0.0004 | - | - |
| 3.7636 | 414 | 0.0065 | - | - |
| 3.7727 | 415 | 0.0007 | - | - |
| 3.7818 | 416 | 0.0008 | - | - |
| 3.7909 | 417 | 0.0007 | - | - |
| 3.8 | 418 | 0.0018 | - | - |
| 3.8091 | 419 | 0.001 | - | - |
| 3.8182 | 420 | 0.0305 | - | - |
| 3.8273 | 421 | 0.001 | - | - |
| 3.8364 | 422 | 0.0011 | - | - |
| 3.8455 | 423 | 0.0004 | - | - |
| 3.8545 | 424 | 0.003 | - | - |
| 3.8636 | 425 | 0.002 | - | - |
| 3.8727 | 426 | 0.0018 | - | - |
| 3.8818 | 427 | 0.0968 | - | - |
| 3.8909 | 428 | 0.002 | - | - |
| 3.9 | 429 | 0.002 | - | - |
| 3.9091 | 430 | 0.0156 | - | - |
| 3.9182 | 431 | 0.0059 | - | - |
| 3.9273 | 432 | 0.001 | - | - |
| 3.9364 | 433 | 0.0153 | - | - |
| 3.9455 | 434 | 0.0013 | - | - |
| 3.9545 | 435 | 0.0003 | - | - |
| 3.9636 | 436 | 0.001 | - | - |
| 3.9727 | 437 | 0.0005 | - | - |
| 3.9818 | 438 | 0.0012 | - | - |
| 3.9909 | 439 | 0.0109 | - | - |
| 4.0 | 440 | 0.1597 | 0.0211 | 0.7235 |
| 4.0091 | 441 | 0.0027 | - | - |
| 4.0182 | 442 | 0.0007 | - | - |
| 4.0273 | 443 | 0.0089 | - | - |
| 4.0364 | 444 | 0.0007 | - | - |
| 4.0455 | 445 | 0.005 | - | - |
| 4.0545 | 446 | 0.0019 | - | - |
| 4.0636 | 447 | 0.0007 | - | - |
| 4.0727 | 448 | 0.0008 | - | - |
| 4.0818 | 449 | 0.002 | - | - |
| 4.0909 | 450 | 0.043 | - | - |
| 4.1 | 451 | 0.0273 | - | - |
| 4.1091 | 452 | 0.0009 | - | - |
| 4.1182 | 453 | 0.0011 | - | - |
| 4.1273 | 454 | 0.0007 | - | - |
| 4.1364 | 455 | 0.0062 | - | - |
| 4.1455 | 456 | 0.0004 | - | - |
| 4.1545 | 457 | 0.0008 | - | - |
| 4.1636 | 458 | 0.0128 | - | - |
| 4.1727 | 459 | 0.0012 | - | - |
| 4.1818 | 460 | 0.0013 | - | - |
| 4.1909 | 461 | 0.0009 | - | - |
| 4.2 | 462 | 0.0011 | - | - |
| 4.2091 | 463 | 0.0336 | - | - |
| 4.2182 | 464 | 0.0018 | - | - |
| 4.2273 | 465 | 0.0009 | - | - |
| 4.2364 | 466 | 0.0049 | - | - |
| 4.2455 | 467 | 0.0012 | - | - |
| 4.2545 | 468 | 0.001 | - | - |
| 4.2636 | 469 | 0.0024 | - | - |
| 4.2727 | 470 | 0.0063 | - | - |
| 4.2818 | 471 | 0.0008 | - | - |
| 4.2909 | 472 | 0.0793 | - | - |
| 4.3 | 473 | 0.0016 | - | - |
| 4.3091 | 474 | 0.0016 | - | - |
| 4.3182 | 475 | 0.0043 | - | - |
| 4.3273 | 476 | 0.036 | - | - |
| 4.3364 | 477 | 0.002 | - | - |
| 4.3455 | 478 | 0.0019 | - | - |
| 4.3545 | 479 | 0.0012 | - | - |
| 4.3636 | 480 | 0.0059 | - | - |
| 4.3727 | 481 | 0.0017 | - | - |
| 4.3818 | 482 | 0.0004 | - | - |
| 4.3909 | 483 | 0.0014 | - | - |
| 4.4 | 484 | 0.0143 | - | - |
| 4.4091 | 485 | 0.0014 | - | - |
| 4.4182 | 486 | 0.0009 | - | - |
| 4.4273 | 487 | 0.0027 | - | - |
| 4.4364 | 488 | 0.0017 | - | - |
| 4.4455 | 489 | 0.0007 | - | - |
| 4.4545 | 490 | 0.0008 | - | - |
| 4.4636 | 491 | 0.0008 | - | - |
| 4.4727 | 492 | 0.0014 | - | - |
| 4.4818 | 493 | 0.0011 | - | - |
| 4.4909 | 494 | 0.0013 | - | - |
| 4.5 | 495 | 0.0016 | - | - |
| 4.5091 | 496 | 0.001 | - | - |
| 4.5182 | 497 | 0.0008 | - | - |
| 4.5273 | 498 | 0.001 | - | - |
| 4.5364 | 499 | 0.0019 | - | - |
| 4.5455 | 500 | 0.0008 | - | - |
</details>
### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |