File size: 62,811 Bytes
9eb1473
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1760
- loss:MultipleNegativesRankingLoss
base_model: WhereIsAI/UAE-Large-V1
widget:
- source_sentence: What is the relationship between the x- and y-coordinates in a
    linear relationship, and how can this relationship be represented visually on
    a graph?
  sentences:
  - '"A linear relationship is a relationship between variables such that when plotted
    on a coordinate plane, the points lie on a line." Additionally, "You can think
    of a line, then, as a collection of an infinite number of individual points that
    share the same mathematical relationship."'
  - '"A ''model'' is a situation-specific description of a phenomenon based on a theory,
    that allows us to make a specific prediction." and "In physics, it is particularly
    important to distinguish between these two terms. A model provides an immediate
    understanding of something based on a theory."'
  - '"Use capital letters to denote sets, $A,B, C, X, Y$ etc. [...] if you stick with
    these conventions people reading your work (including the person marking your
    exams) will know — ''Oh $A$ is that set they are talking about'' and ''$a$ is
    an element of that set.''"'
- source_sentence: What factors influence whether thin-film interference results in
    constructive or destructive interference?
  sentences:
  - '"For nonrelativistic velocities, an observer moving along at the same velocity
    as an Ohmic conductor measures the usual Ohm''s law in his reference frame, $\textbf{J}_{f}''
    = \sigma \textbf{E}''$... the current density in all inertial frames is the same
    so that (3) in (4) gives us the generalized Ohm''s law as $\textbf{J}_{f}'' =
    \textbf{J}_{f} = \sigma (\textbf{E} + \textbf{v} \times \textbf{B})$ where v is
    the velocity of the conductor."'
  - '"Thin-film interference thus depends on film thickness, the wavelength of light,
    and the refractive indices."'
  - '"A summary of the properties of concave mirrors is shown below: • converging
    • real image • inverted • image in front of mirror. A summary of the properties
    of convex mirrors is shown below: • diverging • virtual image • upright • image
    behind mirror."'
- source_sentence: How do non-conservative forces affect the total energy change in
    a system undergoing an irreversible process?
  sentences:
  - '"Energy is conserved but some mechanical energy has been transferred into nonrecoverable
    energy $W_{\mathrm{nc}}$. We shall refer to processes in which there is non-zero
    nonrecoverable energy as irreversible processes."'
  - '"Hamilton’s equations give $2s$ first-order differential equations for $p_{k},q_{k}$
    for each of the $s=n-m$ degrees of freedom. Lagrange’s equations give $s$ second-order
    differential equations for the $s$ independent generalized coordinates $q_{k},\dot{q}_{k}."'
  - '"Determine what happens as $\Delta x$ approaches 0."'
- source_sentence: What are the conditions under which a mutant virus is likely to
    replace a wildtype virus in a population, according to the SIR model of disease
    dynamics?
  sentences:
  - '"In the limit of high Reynolds number, viscosity disappears from the problem
    and the drag force should not depend on viscosity. This reasoning contains several
    subtle untruths, yet its conclusion is mostly correct. ... To make \( F \) independent
    of viscosity, \( F \) must be independent of Reynolds number!"'
  - '"A more mathematically rigorous name would be the renormalization monoid."'
  - '"I^{\prime}$ increases exponentially if $\frac{\beta^{\prime}(d+c+\gamma)}{\beta}-\left(d+c^{\prime}+\gamma^{\prime}\right)>0$
    or after some elementary algebra, $\frac{\beta^{\prime}}{d+c^{\prime}+\gamma^{\prime}}>\frac{\beta}{d+c+\gamma}$."
    Additionally, "our result (4.6.8) suggests that endemic viruses (or other microorganisms)
    will tend to evolve (i) to be more easily transmitted between people $\left(\beta^{\prime}>\beta\right)
    ;$ (ii) to make people sick longer $\left(\gamma^{\prime}<\gamma\right)$, and;
    (iii) to be less deadly $c^{\prime}<c$."'
- source_sentence: What is the relationship between the smallest perturbation of a
    matrix and its rank, as established in theorems regarding matrix perturbations?
  sentences:
  - '"Suppose $A \in C^{m \times n}$ has full column rank (= n). Then $\min _{\Delta
    \in \mathbb{C}^{m \times n}}\left\{\|\Delta\|_{2} \mid A+\Delta \text { has rank
    }<n\right\}=\sigma_{n}(A)$."'
  - '"Complementary angles have measures that add up to 90 degrees."'
  - '"If a beam of light enters and then exits the elevator, the observer on Earth
    and the one accelerating in empty space must observe the same thing, since they
    cannot distinguish between being on Earth or accelerating in space. The observer
    in space, who is accelerating, will observe that the beam of light bends as it
    crosses the elevator... that means that if the path of a beam of light is curved
    near Earth, it must be because space itself is curved in the presence of a gravitational
    field!"'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on WhereIsAI/UAE-Large-V1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: eval
      type: eval
    metrics:
    - type: cosine_accuracy@1
      value: 0.6142857142857143
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7357142857142858
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7833333333333333
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8380952380952381
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6142857142857143
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24523809523809523
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15666666666666665
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08380952380952378
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6142857142857143
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7357142857142858
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7833333333333333
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8380952380952381
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7234956246301203
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6871305744520029
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6925322242948972
      name: Cosine Map@100
---

# SentenceTransformer based on WhereIsAI/UAE-Large-V1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) <!-- at revision f4264cd240f4e46a527f9f57a70cda6c2a12d248 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("cyberbabooshka/uae_large_ft1")
# Run inference
sentences = [
    'What is the relationship between the smallest perturbation of a matrix and its rank, as established in theorems regarding matrix perturbations?',
    '"Suppose $A \\in C^{m \\times n}$ has full column rank (= n). Then $\\min _{\\Delta \\in \\mathbb{C}^{m \\times n}}\\left\\{\\|\\Delta\\|_{2} \\mid A+\\Delta \\text { has rank }<n\\right\\}=\\sigma_{n}(A)$."',
    '"If a beam of light enters and then exits the elevator, the observer on Earth and the one accelerating in empty space must observe the same thing, since they cannot distinguish between being on Earth or accelerating in space. The observer in space, who is accelerating, will observe that the beam of light bends as it crosses the elevator... that means that if the path of a beam of light is curved near Earth, it must be because space itself is curved in the presence of a gravitational field!"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `eval`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6143     |
| cosine_accuracy@3   | 0.7357     |
| cosine_accuracy@5   | 0.7833     |
| cosine_accuracy@10  | 0.8381     |
| cosine_precision@1  | 0.6143     |
| cosine_precision@3  | 0.2452     |
| cosine_precision@5  | 0.1567     |
| cosine_precision@10 | 0.0838     |
| cosine_recall@1     | 0.6143     |
| cosine_recall@3     | 0.7357     |
| cosine_recall@5     | 0.7833     |
| cosine_recall@10    | 0.8381     |
| **cosine_ndcg@10**  | **0.7235** |
| cosine_mrr@10       | 0.6871     |
| cosine_map@100      | 0.6925     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 1,760 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 9 tokens</li><li>mean: 24.87 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 68.37 tokens</li><li>max: 500 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                             | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>How is a proper coloring of a graph defined in the context of vertices and edges?</code>                                                     | <code>"A coloring is called proper if for each edge joining two distinct vertices, the two vertices it joins have different colors."</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
  | <code>What is the relationship between the first excited state of the box model and the p orbitals in a hydrogen atom?</code>                      | <code>"The p orbitals are similar to the first excited state of the box, i.e. $(n_{x},n_{y},n_{z})=(2,1,1)$ is similar to a $p_{x}$ orbital, $(n_{x},n_{y},n_{z})=(1,2,1)$ is similar to a $p_{y}$ orbital and $(n_{x},n_{y},n_{z})=(1,1,2)$ is similar to a $p_{z}$ orbital."</code>                                                                                                                                                                                                                                                                                                                                                               |
  | <code>How can the behavior of the derivative \( f'(x) \) indicate the presence of a local maximum or minimum at a critical point \( x=a \)?</code> | <code>"If there is a local maximum when \( x=a \), the function must be lower near \( x=a \) than it is right at \( x=a \). If the derivative exists near \( x=a \), this means \( f'(x)>0 \) when \( x \) is near \( a \) and \( x < a \), because the function must 'slope up' just to the left of \( a \). Similarly, \( f'(x) < 0 \) when \( x \) is near \( a \) and \( x>a \), because \( f \) slopes down from the local maximum as we move to the right. Using the same reasoning, if there is a local minimum at \( x=a \), the derivative of \( f \) must be negative just to the left of \( a \) and positive just to the right."</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

* Size: 420 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 420 samples:
  |         | anchor                                                                             | positive                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 12 tokens</li><li>mean: 24.97 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 68.52 tokens</li><li>max: 452 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                              | positive                                                                                                                                                                                                                                                       |
  |:------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What are the two central classes mentioned in the FileSystem framework and what do they represent?</code>                     | <code>"The class `FileReference` is the most important entry point to the framework." and "FileSystem is a powerful and elegant library to manipulate files."</code>                                                                                           |
  | <code>What is the significance of Turing's work in the context of PDE-based models for self-organization of complex systems?</code> | <code>"Turing’s monumental work on the chemical basis of morphogenesis played an important role in igniting researchers’ attention to the PDE-based continuous field models as a mathematical framework to study self-organization of complex systems."</code> |
  | <code>What are the two options for reducing accelerations as discussed in the passage?</code>                                       | <code>"From the above definitions we see that there are really two options for reducing accelerations. We can reduce the amount that velocity changes, or we can increase the time over which the velocity changes (or both)."</code>                          |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `eval_on_start`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.05
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | Validation Loss | eval_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:---------------:|:-------------------:|
| 0      | 0    | -             | 0.0971          | 0.6824              |
| 0.0091 | 1    | 0.1198        | -               | -                   |
| 0.0182 | 2    | 0.0787        | -               | -                   |
| 0.0273 | 3    | 0.0614        | -               | -                   |
| 0.0364 | 4    | 0.138         | -               | -                   |
| 0.0455 | 5    | 0.1204        | -               | -                   |
| 0.0545 | 6    | 0.1885        | -               | -                   |
| 0.0636 | 7    | 0.0475        | -               | -                   |
| 0.0727 | 8    | 0.1358        | -               | -                   |
| 0.0818 | 9    | 0.1666        | -               | -                   |
| 0.0909 | 10   | 0.0737        | -               | -                   |
| 0.1    | 11   | 0.0997        | -               | -                   |
| 0.1091 | 12   | 0.0795        | -               | -                   |
| 0.1182 | 13   | 0.1071        | -               | -                   |
| 0.1273 | 14   | 0.1224        | -               | -                   |
| 0.1364 | 15   | 0.0499        | -               | -                   |
| 0.1455 | 16   | 0.0806        | -               | -                   |
| 0.1545 | 17   | 0.0353        | -               | -                   |
| 0.1636 | 18   | 0.0542        | -               | -                   |
| 0.1727 | 19   | 0.0412        | -               | -                   |
| 0.1818 | 20   | 0.1375        | -               | -                   |
| 0.1909 | 21   | 0.1124        | -               | -                   |
| 0.2    | 22   | 0.0992        | -               | -                   |
| 0.2091 | 23   | 0.0285        | -               | -                   |
| 0.2182 | 24   | 0.0337        | -               | -                   |
| 0.2273 | 25   | 0.0737        | -               | -                   |
| 0.2364 | 26   | 0.2011        | -               | -                   |
| 0.2455 | 27   | 0.0241        | -               | -                   |
| 0.2545 | 28   | 0.1319        | -               | -                   |
| 0.2636 | 29   | 0.0104        | -               | -                   |
| 0.2727 | 30   | 0.0162        | -               | -                   |
| 0.2818 | 31   | 0.3061        | -               | -                   |
| 0.2909 | 32   | 0.0422        | -               | -                   |
| 0.3    | 33   | 0.1893        | -               | -                   |
| 0.3091 | 34   | 0.0207        | -               | -                   |
| 0.3182 | 35   | 0.0744        | -               | -                   |
| 0.3273 | 36   | 0.0246        | -               | -                   |
| 0.3364 | 37   | 0.0079        | -               | -                   |
| 0.3455 | 38   | 0.0256        | -               | -                   |
| 0.3545 | 39   | 0.0224        | -               | -                   |
| 0.3636 | 40   | 0.0151        | -               | -                   |
| 0.3727 | 41   | 0.0738        | -               | -                   |
| 0.3818 | 42   | 0.0239        | -               | -                   |
| 0.3909 | 43   | 0.0169        | -               | -                   |
| 0.4    | 44   | 0.0152        | -               | -                   |
| 0.4091 | 45   | 0.0244        | -               | -                   |
| 0.4182 | 46   | 0.1708        | -               | -                   |
| 0.4273 | 47   | 0.0146        | -               | -                   |
| 0.4364 | 48   | 0.1367        | -               | -                   |
| 0.4455 | 49   | 0.049         | -               | -                   |
| 0.4545 | 50   | 0.0211        | -               | -                   |
| 0.4636 | 51   | 0.0135        | -               | -                   |
| 0.4727 | 52   | 0.0668        | -               | -                   |
| 0.4818 | 53   | 0.087         | -               | -                   |
| 0.4909 | 54   | 0.0046        | -               | -                   |
| 0.5    | 55   | 0.0032        | -               | -                   |
| 0.5091 | 56   | 0.0133        | -               | -                   |
| 0.5182 | 57   | 0.0109        | -               | -                   |
| 0.5273 | 58   | 0.0396        | -               | -                   |
| 0.5364 | 59   | 0.0291        | -               | -                   |
| 0.5455 | 60   | 0.0299        | -               | -                   |
| 0.5545 | 61   | 0.0134        | -               | -                   |
| 0.5636 | 62   | 0.0135        | -               | -                   |
| 0.5727 | 63   | 0.0049        | -               | -                   |
| 0.5818 | 64   | 0.0199        | -               | -                   |
| 0.5909 | 65   | 0.1533        | -               | -                   |
| 0.6    | 66   | 0.3639        | -               | -                   |
| 0.6091 | 67   | 0.0652        | -               | -                   |
| 0.6182 | 68   | 0.0315        | -               | -                   |
| 0.6273 | 69   | 0.0403        | -               | -                   |
| 0.6364 | 70   | 0.011         | -               | -                   |
| 0.6455 | 71   | 0.0265        | -               | -                   |
| 0.6545 | 72   | 0.1146        | -               | -                   |
| 0.6636 | 73   | 0.0932        | -               | -                   |
| 0.6727 | 74   | 0.0234        | -               | -                   |
| 0.6818 | 75   | 0.0581        | -               | -                   |
| 0.6909 | 76   | 0.0132        | -               | -                   |
| 0.7    | 77   | 0.1183        | -               | -                   |
| 0.7091 | 78   | 0.0913        | -               | -                   |
| 0.7182 | 79   | 0.0262        | -               | -                   |
| 0.7273 | 80   | 0.0262        | -               | -                   |
| 0.7364 | 81   | 0.0159        | -               | -                   |
| 0.7455 | 82   | 0.0407        | -               | -                   |
| 0.7545 | 83   | 0.0294        | -               | -                   |
| 0.7636 | 84   | 0.0567        | -               | -                   |
| 0.7727 | 85   | 0.0959        | -               | -                   |
| 0.7818 | 86   | 0.033         | -               | -                   |
| 0.7909 | 87   | 0.0234        | -               | -                   |
| 0.8    | 88   | 0.0088        | -               | -                   |
| 0.8091 | 89   | 0.0249        | -               | -                   |
| 0.8182 | 90   | 0.0276        | -               | -                   |
| 0.8273 | 91   | 0.0936        | -               | -                   |
| 0.8364 | 92   | 0.0067        | -               | -                   |
| 0.8455 | 93   | 0.0064        | -               | -                   |
| 0.8545 | 94   | 0.0654        | -               | -                   |
| 0.8636 | 95   | 0.0048        | -               | -                   |
| 0.8727 | 96   | 0.0087        | -               | -                   |
| 0.8818 | 97   | 0.0115        | -               | -                   |
| 0.8909 | 98   | 0.0092        | -               | -                   |
| 0.9    | 99   | 0.0514        | -               | -                   |
| 0.9091 | 100  | 0.1856        | -               | -                   |
| 0.9182 | 101  | 0.0364        | -               | -                   |
| 0.9273 | 102  | 0.0455        | -               | -                   |
| 0.9364 | 103  | 0.0057        | -               | -                   |
| 0.9455 | 104  | 0.0038        | -               | -                   |
| 0.9545 | 105  | 0.0209        | -               | -                   |
| 0.9636 | 106  | 0.0247        | -               | -                   |
| 0.9727 | 107  | 0.0735        | -               | -                   |
| 0.9818 | 108  | 0.004         | -               | -                   |
| 0.9909 | 109  | 0.0174        | -               | -                   |
| 1.0    | 110  | 0.018         | 0.0282          | 0.7093              |
| 1.0091 | 111  | 0.0187        | -               | -                   |
| 1.0182 | 112  | 0.0116        | -               | -                   |
| 1.0273 | 113  | 0.0043        | -               | -                   |
| 1.0364 | 114  | 0.0059        | -               | -                   |
| 1.0455 | 115  | 0.0067        | -               | -                   |
| 1.0545 | 116  | 0.0093        | -               | -                   |
| 1.0636 | 117  | 0.0821        | -               | -                   |
| 1.0727 | 118  | 0.0097        | -               | -                   |
| 1.0818 | 119  | 0.0141        | -               | -                   |
| 1.0909 | 120  | 0.0202        | -               | -                   |
| 1.1    | 121  | 0.0034        | -               | -                   |
| 1.1091 | 122  | 0.0025        | -               | -                   |
| 1.1182 | 123  | 0.006         | -               | -                   |
| 1.1273 | 124  | 0.004         | -               | -                   |
| 1.1364 | 125  | 0.003         | -               | -                   |
| 1.1455 | 126  | 0.0399        | -               | -                   |
| 1.1545 | 127  | 0.0026        | -               | -                   |
| 1.1636 | 128  | 0.0043        | -               | -                   |
| 1.1727 | 129  | 0.1317        | -               | -                   |
| 1.1818 | 130  | 0.0024        | -               | -                   |
| 1.1909 | 131  | 0.0027        | -               | -                   |
| 1.2    | 132  | 0.076         | -               | -                   |
| 1.2091 | 133  | 0.0302        | -               | -                   |
| 1.2182 | 134  | 0.0026        | -               | -                   |
| 1.2273 | 135  | 0.1611        | -               | -                   |
| 1.2364 | 136  | 0.0413        | -               | -                   |
| 1.2455 | 137  | 0.0118        | -               | -                   |
| 1.2545 | 138  | 0.0042        | -               | -                   |
| 1.2636 | 139  | 0.0401        | -               | -                   |
| 1.2727 | 140  | 0.0036        | -               | -                   |
| 1.2818 | 141  | 0.0034        | -               | -                   |
| 1.2909 | 142  | 0.0026        | -               | -                   |
| 1.3    | 143  | 0.0044        | -               | -                   |
| 1.3091 | 144  | 0.0024        | -               | -                   |
| 1.3182 | 145  | 0.0036        | -               | -                   |
| 1.3273 | 146  | 0.0242        | -               | -                   |
| 1.3364 | 147  | 0.0015        | -               | -                   |
| 1.3455 | 148  | 0.1008        | -               | -                   |
| 1.3545 | 149  | 0.0057        | -               | -                   |
| 1.3636 | 150  | 0.0062        | -               | -                   |
| 1.3727 | 151  | 0.0048        | -               | -                   |
| 1.3818 | 152  | 0.0026        | -               | -                   |
| 1.3909 | 153  | 0.0045        | -               | -                   |
| 1.4    | 154  | 0.0139        | -               | -                   |
| 1.4091 | 155  | 0.0017        | -               | -                   |
| 1.4182 | 156  | 0.0012        | -               | -                   |
| 1.4273 | 157  | 0.0009        | -               | -                   |
| 1.4364 | 158  | 0.006         | -               | -                   |
| 1.4455 | 159  | 0.0618        | -               | -                   |
| 1.4545 | 160  | 0.0889        | -               | -                   |
| 1.4636 | 161  | 0.0034        | -               | -                   |
| 1.4727 | 162  | 0.0184        | -               | -                   |
| 1.4818 | 163  | 0.0035        | -               | -                   |
| 1.4909 | 164  | 0.002         | -               | -                   |
| 1.5    | 165  | 0.0115        | -               | -                   |
| 1.5091 | 166  | 0.0008        | -               | -                   |
| 1.5182 | 167  | 0.0113        | -               | -                   |
| 1.5273 | 168  | 0.01          | -               | -                   |
| 1.5364 | 169  | 0.0177        | -               | -                   |
| 1.5455 | 170  | 0.0059        | -               | -                   |
| 1.5545 | 171  | 0.0123        | -               | -                   |
| 1.5636 | 172  | 0.0103        | -               | -                   |
| 1.5727 | 173  | 0.008         | -               | -                   |
| 1.5818 | 174  | 0.002         | -               | -                   |
| 1.5909 | 175  | 0.0039        | -               | -                   |
| 1.6    | 176  | 0.0174        | -               | -                   |
| 1.6091 | 177  | 0.0191        | -               | -                   |
| 1.6182 | 178  | 0.002         | -               | -                   |
| 1.6273 | 179  | 0.0009        | -               | -                   |
| 1.6364 | 180  | 0.0021        | -               | -                   |
| 1.6455 | 181  | 0.0011        | -               | -                   |
| 1.6545 | 182  | 0.0027        | -               | -                   |
| 1.6636 | 183  | 0.0005        | -               | -                   |
| 1.6727 | 184  | 0.0026        | -               | -                   |
| 1.6818 | 185  | 0.0047        | -               | -                   |
| 1.6909 | 186  | 0.0033        | -               | -                   |
| 1.7    | 187  | 0.0402        | -               | -                   |
| 1.7091 | 188  | 0.0128        | -               | -                   |
| 1.7182 | 189  | 0.01          | -               | -                   |
| 1.7273 | 190  | 0.0057        | -               | -                   |
| 1.7364 | 191  | 0.0133        | -               | -                   |
| 1.7455 | 192  | 0.0099        | -               | -                   |
| 1.7545 | 193  | 0.1022        | -               | -                   |
| 1.7636 | 194  | 0.0223        | -               | -                   |
| 1.7727 | 195  | 0.0037        | -               | -                   |
| 1.7818 | 196  | 0.0073        | -               | -                   |
| 1.7909 | 197  | 0.0212        | -               | -                   |
| 1.8    | 198  | 0.0231        | -               | -                   |
| 1.8091 | 199  | 0.0016        | -               | -                   |
| 1.8182 | 200  | 0.0017        | -               | -                   |
| 1.8273 | 201  | 0.0035        | -               | -                   |
| 1.8364 | 202  | 0.0165        | -               | -                   |
| 1.8455 | 203  | 0.0131        | -               | -                   |
| 1.8545 | 204  | 0.0032        | -               | -                   |
| 1.8636 | 205  | 0.0075        | -               | -                   |
| 1.8727 | 206  | 0.0438        | -               | -                   |
| 1.8818 | 207  | 0.0022        | -               | -                   |
| 1.8909 | 208  | 0.0501        | -               | -                   |
| 1.9    | 209  | 0.0121        | -               | -                   |
| 1.9091 | 210  | 0.0036        | -               | -                   |
| 1.9182 | 211  | 0.0041        | -               | -                   |
| 1.9273 | 212  | 0.0048        | -               | -                   |
| 1.9364 | 213  | 0.0159        | -               | -                   |
| 1.9455 | 214  | 0.0036        | -               | -                   |
| 1.9545 | 215  | 0.0035        | -               | -                   |
| 1.9636 | 216  | 0.004         | -               | -                   |
| 1.9727 | 217  | 0.0039        | -               | -                   |
| 1.9818 | 218  | 0.0177        | -               | -                   |
| 1.9909 | 219  | 0.0042        | -               | -                   |
| 2.0    | 220  | 0.0044        | 0.0230          | 0.7225              |
| 2.0091 | 221  | 0.0339        | -               | -                   |
| 2.0182 | 222  | 0.0032        | -               | -                   |
| 2.0273 | 223  | 0.0133        | -               | -                   |
| 2.0364 | 224  | 0.0031        | -               | -                   |
| 2.0455 | 225  | 0.0025        | -               | -                   |
| 2.0545 | 226  | 0.0039        | -               | -                   |
| 2.0636 | 227  | 0.0011        | -               | -                   |
| 2.0727 | 228  | 0.0021        | -               | -                   |
| 2.0818 | 229  | 0.0591        | -               | -                   |
| 2.0909 | 230  | 0.0011        | -               | -                   |
| 2.1    | 231  | 0.0008        | -               | -                   |
| 2.1091 | 232  | 0.0014        | -               | -                   |
| 2.1182 | 233  | 0.0057        | -               | -                   |
| 2.1273 | 234  | 0.0044        | -               | -                   |
| 2.1364 | 235  | 0.001         | -               | -                   |
| 2.1455 | 236  | 0.0009        | -               | -                   |
| 2.1545 | 237  | 0.0028        | -               | -                   |
| 2.1636 | 238  | 0.0076        | -               | -                   |
| 2.1727 | 239  | 0.0018        | -               | -                   |
| 2.1818 | 240  | 0.0022        | -               | -                   |
| 2.1909 | 241  | 0.0029        | -               | -                   |
| 2.2    | 242  | 0.0004        | -               | -                   |
| 2.2091 | 243  | 0.0025        | -               | -                   |
| 2.2182 | 244  | 0.0013        | -               | -                   |
| 2.2273 | 245  | 0.0487        | -               | -                   |
| 2.2364 | 246  | 0.0016        | -               | -                   |
| 2.2455 | 247  | 0.0023        | -               | -                   |
| 2.2545 | 248  | 0.0038        | -               | -                   |
| 2.2636 | 249  | 0.003         | -               | -                   |
| 2.2727 | 250  | 0.0017        | -               | -                   |
| 2.2818 | 251  | 0.0056        | -               | -                   |
| 2.2909 | 252  | 0.0036        | -               | -                   |
| 2.3    | 253  | 0.0016        | -               | -                   |
| 2.3091 | 254  | 0.0021        | -               | -                   |
| 2.3182 | 255  | 0.0019        | -               | -                   |
| 2.3273 | 256  | 0.001         | -               | -                   |
| 2.3364 | 257  | 0.0017        | -               | -                   |
| 2.3455 | 258  | 0.0027        | -               | -                   |
| 2.3545 | 259  | 0.0039        | -               | -                   |
| 2.3636 | 260  | 0.0011        | -               | -                   |
| 2.3727 | 261  | 0.0248        | -               | -                   |
| 2.3818 | 262  | 0.0219        | -               | -                   |
| 2.3909 | 263  | 0.0015        | -               | -                   |
| 2.4    | 264  | 0.0009        | -               | -                   |
| 2.4091 | 265  | 0.0013        | -               | -                   |
| 2.4182 | 266  | 0.0049        | -               | -                   |
| 2.4273 | 267  | 0.0073        | -               | -                   |
| 2.4364 | 268  | 0.007         | -               | -                   |
| 2.4455 | 269  | 0.0024        | -               | -                   |
| 2.4545 | 270  | 0.0008        | -               | -                   |
| 2.4636 | 271  | 0.001         | -               | -                   |
| 2.4727 | 272  | 0.0016        | -               | -                   |
| 2.4818 | 273  | 0.0007        | -               | -                   |
| 2.4909 | 274  | 0.0091        | -               | -                   |
| 2.5    | 275  | 0.0127        | -               | -                   |
| 2.5091 | 276  | 0.0013        | -               | -                   |
| 2.5182 | 277  | 0.001         | -               | -                   |
| 2.5273 | 278  | 0.0006        | -               | -                   |
| 2.5364 | 279  | 0.005         | -               | -                   |
| 2.5455 | 280  | 0.0154        | -               | -                   |
| 2.5545 | 281  | 0.0015        | -               | -                   |
| 2.5636 | 282  | 0.0229        | -               | -                   |
| 2.5727 | 283  | 0.0026        | -               | -                   |
| 2.5818 | 284  | 0.0008        | -               | -                   |
| 2.5909 | 285  | 0.0024        | -               | -                   |
| 2.6    | 286  | 0.0012        | -               | -                   |
| 2.6091 | 287  | 0.0748        | -               | -                   |
| 2.6182 | 288  | 0.0086        | -               | -                   |
| 2.6273 | 289  | 0.0013        | -               | -                   |
| 2.6364 | 290  | 0.0089        | -               | -                   |
| 2.6455 | 291  | 0.0011        | -               | -                   |
| 2.6545 | 292  | 0.0096        | -               | -                   |
| 2.6636 | 293  | 0.1416        | -               | -                   |
| 2.6727 | 294  | 0.0005        | -               | -                   |
| 2.6818 | 295  | 0.0021        | -               | -                   |
| 2.6909 | 296  | 0.0014        | -               | -                   |
| 2.7    | 297  | 0.0097        | -               | -                   |
| 2.7091 | 298  | 0.0014        | -               | -                   |
| 2.7182 | 299  | 0.0009        | -               | -                   |
| 2.7273 | 300  | 0.0016        | -               | -                   |
| 2.7364 | 301  | 0.0166        | -               | -                   |
| 2.7455 | 302  | 0.0028        | -               | -                   |
| 2.7545 | 303  | 0.0014        | -               | -                   |
| 2.7636 | 304  | 0.0018        | -               | -                   |
| 2.7727 | 305  | 0.0059        | -               | -                   |
| 2.7818 | 306  | 0.0012        | -               | -                   |
| 2.7909 | 307  | 0.0008        | -               | -                   |
| 2.8    | 308  | 0.0007        | -               | -                   |
| 2.8091 | 309  | 0.0038        | -               | -                   |
| 2.8182 | 310  | 0.0012        | -               | -                   |
| 2.8273 | 311  | 0.0091        | -               | -                   |
| 2.8364 | 312  | 0.0111        | -               | -                   |
| 2.8455 | 313  | 0.0016        | -               | -                   |
| 2.8545 | 314  | 0.0089        | -               | -                   |
| 2.8636 | 315  | 0.0071        | -               | -                   |
| 2.8727 | 316  | 0.0012        | -               | -                   |
| 2.8818 | 317  | 0.0251        | -               | -                   |
| 2.8909 | 318  | 0.0017        | -               | -                   |
| 2.9    | 319  | 0.0006        | -               | -                   |
| 2.9091 | 320  | 0.0014        | -               | -                   |
| 2.9182 | 321  | 0.0011        | -               | -                   |
| 2.9273 | 322  | 0.0084        | -               | -                   |
| 2.9364 | 323  | 0.0055        | -               | -                   |
| 2.9455 | 324  | 0.0011        | -               | -                   |
| 2.9545 | 325  | 0.0017        | -               | -                   |
| 2.9636 | 326  | 0.0008        | -               | -                   |
| 2.9727 | 327  | 0.0082        | -               | -                   |
| 2.9818 | 328  | 0.0006        | -               | -                   |
| 2.9909 | 329  | 0.0008        | -               | -                   |
| 3.0    | 330  | 0.0022        | 0.0275          | 0.6950              |
| 3.0091 | 331  | 0.0007        | -               | -                   |
| 3.0182 | 332  | 0.0012        | -               | -                   |
| 3.0273 | 333  | 0.0007        | -               | -                   |
| 3.0364 | 334  | 0.0038        | -               | -                   |
| 3.0455 | 335  | 0.0006        | -               | -                   |
| 3.0545 | 336  | 0.0012        | -               | -                   |
| 3.0636 | 337  | 0.0873        | -               | -                   |
| 3.0727 | 338  | 0.0022        | -               | -                   |
| 3.0818 | 339  | 0.0004        | -               | -                   |
| 3.0909 | 340  | 0.001         | -               | -                   |
| 3.1    | 341  | 0.0002        | -               | -                   |
| 3.1091 | 342  | 0.0069        | -               | -                   |
| 3.1182 | 343  | 0.0009        | -               | -                   |
| 3.1273 | 344  | 0.0101        | -               | -                   |
| 3.1364 | 345  | 0.0022        | -               | -                   |
| 3.1455 | 346  | 0.009         | -               | -                   |
| 3.1545 | 347  | 0.0018        | -               | -                   |
| 3.1636 | 348  | 0.0018        | -               | -                   |
| 3.1727 | 349  | 0.0045        | -               | -                   |
| 3.1818 | 350  | 0.029         | -               | -                   |
| 3.1909 | 351  | 0.0036        | -               | -                   |
| 3.2    | 352  | 0.0015        | -               | -                   |
| 3.2091 | 353  | 0.0021        | -               | -                   |
| 3.2182 | 354  | 0.0103        | -               | -                   |
| 3.2273 | 355  | 0.0005        | -               | -                   |
| 3.2364 | 356  | 0.0133        | -               | -                   |
| 3.2455 | 357  | 0.0015        | -               | -                   |
| 3.2545 | 358  | 0.001         | -               | -                   |
| 3.2636 | 359  | 0.0024        | -               | -                   |
| 3.2727 | 360  | 0.0052        | -               | -                   |
| 3.2818 | 361  | 0.0032        | -               | -                   |
| 3.2909 | 362  | 0.0024        | -               | -                   |
| 3.3    | 363  | 0.0008        | -               | -                   |
| 3.3091 | 364  | 0.0035        | -               | -                   |
| 3.3182 | 365  | 0.0012        | -               | -                   |
| 3.3273 | 366  | 0.0049        | -               | -                   |
| 3.3364 | 367  | 0.0452        | -               | -                   |
| 3.3455 | 368  | 0.0017        | -               | -                   |
| 3.3545 | 369  | 0.0112        | -               | -                   |
| 3.3636 | 370  | 0.0011        | -               | -                   |
| 3.3727 | 371  | 0.0016        | -               | -                   |
| 3.3818 | 372  | 0.0015        | -               | -                   |
| 3.3909 | 373  | 0.004         | -               | -                   |
| 3.4    | 374  | 0.0074        | -               | -                   |
| 3.4091 | 375  | 0.0005        | -               | -                   |
| 3.4182 | 376  | 0.0007        | -               | -                   |
| 3.4273 | 377  | 0.0014        | -               | -                   |
| 3.4364 | 378  | 0.0097        | -               | -                   |
| 3.4455 | 379  | 0.0026        | -               | -                   |
| 3.4545 | 380  | 0.0022        | -               | -                   |
| 3.4636 | 381  | 0.001         | -               | -                   |
| 3.4727 | 382  | 0.0004        | -               | -                   |
| 3.4818 | 383  | 0.004         | -               | -                   |
| 3.4909 | 384  | 0.0017        | -               | -                   |
| 3.5    | 385  | 0.0014        | -               | -                   |
| 3.5091 | 386  | 0.001         | -               | -                   |
| 3.5182 | 387  | 0.0047        | -               | -                   |
| 3.5273 | 388  | 0.0061        | -               | -                   |
| 3.5364 | 389  | 0.0017        | -               | -                   |
| 3.5455 | 390  | 0.0024        | -               | -                   |
| 3.5545 | 391  | 0.0021        | -               | -                   |
| 3.5636 | 392  | 0.0007        | -               | -                   |
| 3.5727 | 393  | 0.0009        | -               | -                   |
| 3.5818 | 394  | 0.0006        | -               | -                   |
| 3.5909 | 395  | 0.0038        | -               | -                   |
| 3.6    | 396  | 0.0006        | -               | -                   |
| 3.6091 | 397  | 0.0011        | -               | -                   |
| 3.6182 | 398  | 0.001         | -               | -                   |
| 3.6273 | 399  | 0.0014        | -               | -                   |
| 3.6364 | 400  | 0.0007        | -               | -                   |
| 3.6455 | 401  | 0.0052        | -               | -                   |
| 3.6545 | 402  | 0.0008        | -               | -                   |
| 3.6636 | 403  | 0.0009        | -               | -                   |
| 3.6727 | 404  | 0.0017        | -               | -                   |
| 3.6818 | 405  | 0.0028        | -               | -                   |
| 3.6909 | 406  | 0.0044        | -               | -                   |
| 3.7    | 407  | 0.0009        | -               | -                   |
| 3.7091 | 408  | 0.0134        | -               | -                   |
| 3.7182 | 409  | 0.001         | -               | -                   |
| 3.7273 | 410  | 0.0044        | -               | -                   |
| 3.7364 | 411  | 0.0138        | -               | -                   |
| 3.7455 | 412  | 0.0032        | -               | -                   |
| 3.7545 | 413  | 0.0004        | -               | -                   |
| 3.7636 | 414  | 0.0065        | -               | -                   |
| 3.7727 | 415  | 0.0007        | -               | -                   |
| 3.7818 | 416  | 0.0008        | -               | -                   |
| 3.7909 | 417  | 0.0007        | -               | -                   |
| 3.8    | 418  | 0.0018        | -               | -                   |
| 3.8091 | 419  | 0.001         | -               | -                   |
| 3.8182 | 420  | 0.0305        | -               | -                   |
| 3.8273 | 421  | 0.001         | -               | -                   |
| 3.8364 | 422  | 0.0011        | -               | -                   |
| 3.8455 | 423  | 0.0004        | -               | -                   |
| 3.8545 | 424  | 0.003         | -               | -                   |
| 3.8636 | 425  | 0.002         | -               | -                   |
| 3.8727 | 426  | 0.0018        | -               | -                   |
| 3.8818 | 427  | 0.0968        | -               | -                   |
| 3.8909 | 428  | 0.002         | -               | -                   |
| 3.9    | 429  | 0.002         | -               | -                   |
| 3.9091 | 430  | 0.0156        | -               | -                   |
| 3.9182 | 431  | 0.0059        | -               | -                   |
| 3.9273 | 432  | 0.001         | -               | -                   |
| 3.9364 | 433  | 0.0153        | -               | -                   |
| 3.9455 | 434  | 0.0013        | -               | -                   |
| 3.9545 | 435  | 0.0003        | -               | -                   |
| 3.9636 | 436  | 0.001         | -               | -                   |
| 3.9727 | 437  | 0.0005        | -               | -                   |
| 3.9818 | 438  | 0.0012        | -               | -                   |
| 3.9909 | 439  | 0.0109        | -               | -                   |
| 4.0    | 440  | 0.1597        | 0.0211          | 0.7235              |
| 4.0091 | 441  | 0.0027        | -               | -                   |
| 4.0182 | 442  | 0.0007        | -               | -                   |
| 4.0273 | 443  | 0.0089        | -               | -                   |
| 4.0364 | 444  | 0.0007        | -               | -                   |
| 4.0455 | 445  | 0.005         | -               | -                   |
| 4.0545 | 446  | 0.0019        | -               | -                   |
| 4.0636 | 447  | 0.0007        | -               | -                   |
| 4.0727 | 448  | 0.0008        | -               | -                   |
| 4.0818 | 449  | 0.002         | -               | -                   |
| 4.0909 | 450  | 0.043         | -               | -                   |
| 4.1    | 451  | 0.0273        | -               | -                   |
| 4.1091 | 452  | 0.0009        | -               | -                   |
| 4.1182 | 453  | 0.0011        | -               | -                   |
| 4.1273 | 454  | 0.0007        | -               | -                   |
| 4.1364 | 455  | 0.0062        | -               | -                   |
| 4.1455 | 456  | 0.0004        | -               | -                   |
| 4.1545 | 457  | 0.0008        | -               | -                   |
| 4.1636 | 458  | 0.0128        | -               | -                   |
| 4.1727 | 459  | 0.0012        | -               | -                   |
| 4.1818 | 460  | 0.0013        | -               | -                   |
| 4.1909 | 461  | 0.0009        | -               | -                   |
| 4.2    | 462  | 0.0011        | -               | -                   |
| 4.2091 | 463  | 0.0336        | -               | -                   |
| 4.2182 | 464  | 0.0018        | -               | -                   |
| 4.2273 | 465  | 0.0009        | -               | -                   |
| 4.2364 | 466  | 0.0049        | -               | -                   |
| 4.2455 | 467  | 0.0012        | -               | -                   |
| 4.2545 | 468  | 0.001         | -               | -                   |
| 4.2636 | 469  | 0.0024        | -               | -                   |
| 4.2727 | 470  | 0.0063        | -               | -                   |
| 4.2818 | 471  | 0.0008        | -               | -                   |
| 4.2909 | 472  | 0.0793        | -               | -                   |
| 4.3    | 473  | 0.0016        | -               | -                   |
| 4.3091 | 474  | 0.0016        | -               | -                   |
| 4.3182 | 475  | 0.0043        | -               | -                   |
| 4.3273 | 476  | 0.036         | -               | -                   |
| 4.3364 | 477  | 0.002         | -               | -                   |
| 4.3455 | 478  | 0.0019        | -               | -                   |
| 4.3545 | 479  | 0.0012        | -               | -                   |
| 4.3636 | 480  | 0.0059        | -               | -                   |
| 4.3727 | 481  | 0.0017        | -               | -                   |
| 4.3818 | 482  | 0.0004        | -               | -                   |
| 4.3909 | 483  | 0.0014        | -               | -                   |
| 4.4    | 484  | 0.0143        | -               | -                   |
| 4.4091 | 485  | 0.0014        | -               | -                   |
| 4.4182 | 486  | 0.0009        | -               | -                   |
| 4.4273 | 487  | 0.0027        | -               | -                   |
| 4.4364 | 488  | 0.0017        | -               | -                   |
| 4.4455 | 489  | 0.0007        | -               | -                   |
| 4.4545 | 490  | 0.0008        | -               | -                   |
| 4.4636 | 491  | 0.0008        | -               | -                   |
| 4.4727 | 492  | 0.0014        | -               | -                   |
| 4.4818 | 493  | 0.0011        | -               | -                   |
| 4.4909 | 494  | 0.0013        | -               | -                   |
| 4.5    | 495  | 0.0016        | -               | -                   |
| 4.5091 | 496  | 0.001         | -               | -                   |
| 4.5182 | 497  | 0.0008        | -               | -                   |
| 4.5273 | 498  | 0.001         | -               | -                   |
| 4.5364 | 499  | 0.0019        | -               | -                   |
| 4.5455 | 500  | 0.0008        | -               | -                   |

</details>

### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->