training_outputs

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0394
  • Accuracy: 0.993
  • Precision: 0.9913
  • Recall: 0.9884
  • F1: 0.9899
  • Roc Auc: 0.9988

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.045 0.1105 1000 0.0609 0.987 0.9798 0.9827 0.9812 0.9990
0.0539 0.2210 2000 0.0471 0.988 0.9883 0.9769 0.9826 0.9985
0.0467 0.3316 3000 0.0546 0.989 0.9855 0.9827 0.9841 0.9989
0.0439 0.4421 4000 0.0416 0.99 0.9884 0.9827 0.9855 0.9990
0.0419 0.5526 5000 0.0470 0.99 0.9855 0.9855 0.9855 0.9991
0.0395 0.6631 6000 0.0396 0.992 0.9884 0.9884 0.9884 0.9970
0.0329 0.7737 7000 0.0427 0.993 0.9885 0.9913 0.9899 0.9986
0.0373 0.8842 8000 0.0408 0.992 0.9884 0.9884 0.9884 0.9988
0.031 0.9947 9000 0.0394 0.993 0.9913 0.9884 0.9899 0.9988

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
167
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cyberseclabs/bert-classify-url-v1

Finetunes
1 model