test_trainer_full

This model is a fine-tuned version of cyberseclabs/bert-classify-urls-v0.005 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1000
  • Accuracy: 0.9823
  • Precision: 0.9744
  • Recall: 0.9732
  • F1: 0.9738
  • Roc Auc: 0.9965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.1474 0.3846 500 0.1319 0.9704 0.9679 0.9437 0.9556 0.9900
0.1275 0.7692 1000 0.0938 0.9758 0.9739 0.9539 0.9638 0.9957
0.1005 1.1538 1500 0.0905 0.9767 0.9717 0.9590 0.9653 0.9964
0.0637 1.5385 2000 0.0842 0.9815 0.9689 0.9767 0.9728 0.9969
0.0568 1.9231 2500 0.0884 0.9794 0.9666 0.9727 0.9696 0.9972
0.0357 2.3077 3000 0.1019 0.9810 0.9786 0.9647 0.9716 0.9964
0.0272 2.6923 3500 0.1000 0.9823 0.9744 0.9732 0.9738 0.9965

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cyberseclabs/bert-classify-urls-v0.05

Finetuned
(1)
this model