videomae-base-finetuned-kinetics-allkisa-crop-background-0228

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3129
  • Accuracy: 0.9163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 10560

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0035 0.0251 265 0.7057 0.7302
0.0047 1.0251 530 0.6369 0.7840
0.3625 2.0251 795 1.0777 0.7099
0.017 3.0251 1060 1.1492 0.6145
0.0001 4.0251 1325 0.5946 0.8394
0.0006 5.0251 1590 0.4763 0.8134
0.0036 6.0251 1855 0.4798 0.8093
0.0286 7.0251 2120 0.6486 0.8191
0.0003 8.0251 2385 0.8464 0.7775
0.0001 9.0251 2650 0.6891 0.8174
0.0003 10.0251 2915 0.5298 0.8582
0.0003 11.0251 3180 0.7832 0.8289
0.0 12.0251 3445 0.7445 0.8215
0.0 13.0251 3710 0.6594 0.8419
0.0 14.0251 3975 0.7089 0.8297
0.0001 15.0251 4240 0.6542 0.8509
0.0 16.0251 4505 0.7677 0.8346
0.0 17.0251 4770 0.8255 0.8183
0.0011 18.0251 5035 0.7238 0.8378
0.0001 19.0251 5300 0.7826 0.8329
0.0001 20.0251 5565 0.7980 0.8329

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
18
Safetensors
Model size
86.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for d2o2ji/videomae-base-finetuned-kinetics-allkisa-crop-background-0228

Finetuned
(219)
this model