π EfficientNetV2S Poultry Feces Classifier
A convolutional neural network model based on EfficientNetV2S for classifying chicken fecal images into 4 common conditions:
- Coccidiosis
- Healthy
- Newcastle Disease
- Salmonella
This model is designed to support smart poultry farming by enabling early detection of diseases through image-based feces analysis.
𧬠Model Architecture
Base:
EfficientNetV2S
(pretrained on ImageNet, frozen then fine-tuned)Head:
GlobalAveragePooling2D
Dense(128) + BatchNorm + ReLU + Dropout(0.3)
Dense(4, activation='softmax')
π§ͺ Training & Evaluation
Optimizer: Adam
Loss: Categorical Crossentropy
Metric: Accuracy
Dataset:
- Source: Jayavrinda et al., 2023
- 4 classes, resized to 224x224 pixels
- Train/Val/Test sampling (3k/400/400 per class)
EarlyStopping was used to monitor validation accuracy
Accuracy on validation set: ~90%+ (see notebook for full results)
ποΈ Example Usage
from tensorflow.keras.models import load_model
import tensorflow as tf
from PIL import Image
import numpy as np
model = load_model("path/to/your_model.h5")
def preprocess(image_path):
img = Image.open(image_path).resize((224, 224))
img_array = np.array(img) / 255.0
return np.expand_dims(img_array, axis=0)
pred = model.predict(preprocess("feces.jpg"))
class_names = ["Coccidiosis", "Healthy", "Newcastle", "Salmonella"]
print("Prediction:", class_names[np.argmax(pred)])
π Citation
If you use this model or dataset, please cite:
Jayavrinda Vrindavanam, Pradeep Kumar, Gaurav Kamath, Chandrashekar N, and Govind Patil. (2023). Poultry Pathology Visual Dataset [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/3951043
Beyond the Outliers
Datathon 2025
- Downloads last month
- 2