Autoencoder Grayscale2Color Landscape πŸ›‘οΈ

huggingface-hub Pillow numpy tensorflow gradio License: MIT

Introduction

Transform grayscale landscape images into vibrant, full-color visuals with this autoencoder model. Built from scratch, this project leverages deep learning to predict color channels (ab in Lab* color space) from grayscale inputs, delivering impressive results with a sleek, minimalist design. πŸŒ„

Key Features

  • πŸ“Έ Converts grayscale landscape images to vivid RGB.
  • 🧠 Custom autoencoder with spatial attention for enhanced detail.
  • ⚑ Optimized for high-quality inference at 512x512 resolution.
  • πŸ“Š Achieves a PSNR of 21.70 on the validation set.

Notebook

Explore the implementation in our Jupyter notebook:
Open In Colab View on HuggingFace

Dataset

Details about the dataset are available in the README Dataset. πŸ“‚

From Scratch Model

Custom-built autoencoder with a spatial attention mechanism, trained FROM SCRATCH to predict ab color channels from grayscale (L*) inputs. 🧩

Demonstration

Experience the brilliance of our cutting-edge technology! Transform grayscale landscapes into vibrant colors with our interactive demo.

HuggingFace Space

App Interface

Installation

Step 1: Clone the Repository

git clone https://huggingface.co/danhtran2mind/autoencoder-grayscale2color-landscape
cd ./autoencoder-grayscale2color-landscape
git lfs pull

Step 2: Install Dependencies

pip install -r requirements.txt

Usage

Follow these steps to colorize images programmatically using Python.

1. Import Required Libraries

Install and import the necessary libraries for image processing and model inference.

from PIL import Image
import os
import numpy as np
import tensorflow as tf
import requests
import matplotlib.pyplot as plt
from skimage.color import lab2rgb
from models.auto_encoder_gray2color import SpatialAttention

2. Load the Pre-trained Model

Download and load the autoencoder model from a remote source if it’s not already available locally.

load_model_path = "./ckpts/best_model.h5"
os.makedirs(os.path.dirname(load_model_path), exist_ok=True)

print(f"Loading model from {load_model_path}...")
loaded_autoencoder = tf.keras.models.load_model(
    load_model_path, custom_objects={"SpatialAttention": SpatialAttention}
)
print("Model loaded successfully.")

3. Define Image Processing Functions

These functions handle image preprocessing, colorization, and visualization.

def process_image(input_img):
    """Convert a grayscale image to color using the autoencoder."""
    # Store original dimensions
    original_width, original_height = input_img.size
    
    # Preprocess: Convert to grayscale, resize, and normalize
    img = input_img.convert("L").resize((512, 512))
    img_array = tf.keras.preprocessing.image.img_to_array(img) / 255.0
    img_array = img_array[None, ..., 0:1]  # Add batch dimension

    # Predict color channels
    output_array = loaded_autoencoder.predict(img_array)
    
    # Reconstruct LAB image
    L_channel = img_array[0, :, :, 0] * 100.0  # Scale L channel
    ab_channels = output_array[0] * 128.0      # Scale ab channels
    lab_image = np.stack([L_channel, ab_channels[:, :, 0], ab_channels[:, :, 1]], axis=-1)
    
    # Convert to RGB and clip values
    rgb_array = lab2rgb(lab_image)
    rgb_array = np.clip(rgb_array, 0, 1) * 255.0
    
    # Create and resize output image
    rgb_image = Image.fromarray(rgb_array.astype(np.uint8), mode="RGB")
    return rgb_image.resize((original_width, original_height), Image.Resampling.LANCZOS)

def process_and_save_image(image_path):
    """Process an image and save the colorized result."""
    input_img = Image.open(image_path)
    output_img = process_image(input_img)
    output_img.save("output.jpg")
    return input_img, output_img

def plot_images(input_img, output_img):
    """Display input and output images side by side."""
    plt.figure(figsize=(17, 8), dpi=300)
    
    # Plot input grayscale image
    plt.subplot(1, 2, 1)
    plt.imshow(input_img, cmap="gray")
    plt.title("Input Grayscale Image")
    plt.axis("off")
    
    # Plot output colorized image
    plt.subplot(1, 2, 2)
    plt.imshow(output_img)
    plt.title("Colorized Output Image")
    plt.axis("off")
    
    # Save and display the plot
    plt.savefig("output.jpg", dpi=300, bbox_inches="tight")
    plt.show()

4. Perform Inference

Run the colorization process on a sample image.

# Set image dimensions and path
WIDTH, HEIGHT = 512, 512
image_path = "<path_to_input_image.jpg>"  # Replace with your image path

# Process and visualize the image
input_img, output_img = process_and_save_image(image_path)
plot_images(input_img, output_img)

5. Example Output

The output will be a side-by-side comparison of the input grayscale image and the colorized result, saved as output.jpg. For a sample result, see the example below: Output Image

Training Hyperparameters

  • Resolution: 512x512 pixels
  • Color Space: Lab*
  • Custom Layer: SpatialAttention
  • Model File: best_model.h5
  • Epochs: 100

Callbacks

  • Early Stopping: Monitors val_loss, patience of 20 epochs, restores best weights.
  • ReduceLROnPlateau: Monitors val_loss, reduces learning rate by 50% after 5 epochs, minimum learning rate of 1e-6.
  • BackupAndRestore: Saves checkpoints to ./ckpts/backup.

Metrics

  • PSNR (Validation): 21.70 πŸ“ˆ

Environment

  • Python 3.11.11
  • Libraies
    numpy==1.26.4
    tensorflow==2.18.0
    opencv-python==4.11.0.86
    scikit-image==0.25.2
    matplotlib==3.7.2
    scikit-image==0.25.2
    

Contact

For questions or issues, reach out via the HuggingFace Community tab. πŸš€

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using danhtran2mind/autoencoder-grayscale2color-landscape 1