Ghibli Fine-Tuned Stable Diffusion 2.1

Dataset

Avalible at: https://huggingface.co/datasets/uwunish/ghibli-dataset.

Hyperparameters

The fine-tuning process was optimized with the following hyperparameters:

Hyperparameter Value
learning_rate 1e-05
num_train_epochs 40
train_batch_size 2
gradient_accumulation_steps 2
mixed_precision "fp16"
resolution 512
max_grad_norm 1
lr_scheduler "constant"
lr_warmup_steps 0
checkpoints_total_limit 1
use_ema True
use_8bit_adam True
center_crop True
random_flip True
gradient_checkpointing True

These parameters were carefully selected to balance training efficiency and model performance, leveraging techniques like mixed precision and gradient checkpointing.

Metrics

The fine-tuning process achieved a final loss of 0.0345, indicating excellent convergence and high fidelity to the Ghibli art style.

Usage

Step 1: Import Required Libraries

Begin by importing the necessary libraries to power the image generation pipeline.

import torch
from PIL import Image
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
from tqdm import tqdm

Step 2: Configure the Model

Set up the device, data type, and load the pre-trained Ghibli-fine-tuned Stable Diffusion model.

# Configure device and data type
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32

# Model path
model_name = "danhtran2mind/ghibli-fine-tuned-sd-2.1"

# Load model components
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder", torch_dtype=dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(model_name, subfolder="unet", torch_dtype=dtype).to(device)
scheduler = PNDMScheduler.from_pretrained(model_name, subfolder="scheduler")

Step 3: Define the Image Generation Function

Use the following function to generate Ghibli-style images based on your text prompts.

def generate_image(prompt, height=512, width=512, num_inference_steps=50, guidance_scale=3.5, seed=42):
    """Generate a Ghibli-style image from a text prompt."""
    # Set random seed for reproducibility
    generator = torch.Generator(device=device).manual_seed(int(seed))

    # Tokenize and encode the prompt
    text_input = tokenizer(
        [prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
    )
    with torch.no_grad():
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0].to(dtype=dtype)

    # Encode an empty prompt for classifier-free guidance
    uncond_input = tokenizer(
        [""], padding="max_length", max_length=text_input.input_ids.shape[-1], return_tensors="pt"
    )
    with torch.no_grad():
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0].to(dtype=dtype)

    text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

    # Initialize latent representations
    latents = torch.randn(
        (1, unet.config.in_channels, height // 8, width // 8),
        generator=generator,
        dtype=dtype,
        device=device
    )

    # Configure scheduler timesteps
    scheduler.set_timesteps(num_inference_steps)
    latents = latents * scheduler.init_noise_sigma

    # Denoising loop
    for t in tqdm(scheduler.timesteps, desc="Generating image"):
        latent_model_input = torch.cat([latents] * 2)
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        with torch.no_grad():
            if device.type == "cuda":
                with torch.autocast(device_type="cuda", dtype=torch.float16):
                    noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
            else:
                noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

        # Apply classifier-free guidance
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        latents = scheduler.step(noise_pred, t, latents).prev_sample

    # Decode latents to image
    with torch.no_grad():
        latents = latents / vae.config.scaling_factor
        image = vae.decode(latents).sample

    # Convert to PIL Image
    image = (image / 2 + 0.5).clamp(0, 1)
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).round().astype("uint8")
    return Image.fromarray(image[0])

Step 4: Generate Your Image

Craft a vivid prompt and generate your Ghibli-style masterpiece.

# Example prompt
prompt = "a serene landscape in Ghibli style"

# Generate the image
image = generate_image(
    prompt=prompt,
    height=512,
    width=512,
    num_inference_steps=50,
    guidance_scale=3.5,
    seed=42
)

# Display or save the image
image.show()  # Or image.save("ghibli_landscape.png")

Environment

The project was developed and tested in the following environment:

  • Python Version: 3.11.11
  • Dependencies:
Library Version
huggingface-hub 0.30.2
accelerate 1.3.0
bitsandbytes 0.45.5
torch 2.5.1
Pillow 11.1.0
numpy 1.26.4
transformers 4.51.1
torchvision 0.20.1
diffusers 0.33.1
gradio Latest

Ensure your environment matches these specifications to avoid compatibility issues.

Downloads last month
95
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for danhtran2mind/ghibli-fine-tuned-sd-2.1

Finetuned
(54)
this model
Finetunes
3 models

Dataset used to train danhtran2mind/ghibli-fine-tuned-sd-2.1

Space using danhtran2mind/ghibli-fine-tuned-sd-2.1 1