Ghibli Fine-Tuned Stable Diffusion 2.1
Dataset
Avalible at: https://huggingface.co/datasets/uwunish/ghibli-dataset.
Hyperparameters
The fine-tuning process was optimized with the following hyperparameters:
Hyperparameter | Value |
---|---|
learning_rate |
1e-05 |
num_train_epochs |
40 |
train_batch_size |
2 |
gradient_accumulation_steps |
2 |
mixed_precision |
"fp16" |
resolution |
512 |
max_grad_norm |
1 |
lr_scheduler |
"constant" |
lr_warmup_steps |
0 |
checkpoints_total_limit |
1 |
use_ema |
True |
use_8bit_adam |
True |
center_crop |
True |
random_flip |
True |
gradient_checkpointing |
True |
These parameters were carefully selected to balance training efficiency and model performance, leveraging techniques like mixed precision and gradient checkpointing.
Metrics
The fine-tuning process achieved a final loss of 0.0345, indicating excellent convergence and high fidelity to the Ghibli art style.
Usage
Step 1: Import Required Libraries
Begin by importing the necessary libraries to power the image generation pipeline.
import torch
from PIL import Image
import numpy as np
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
from tqdm import tqdm
Step 2: Configure the Model
Set up the device, data type, and load the pre-trained Ghibli-fine-tuned Stable Diffusion model.
# Configure device and data type
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Model path
model_name = "danhtran2mind/ghibli-fine-tuned-sd-2.1"
# Load model components
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder", torch_dtype=dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(model_name, subfolder="unet", torch_dtype=dtype).to(device)
scheduler = PNDMScheduler.from_pretrained(model_name, subfolder="scheduler")
Step 3: Define the Image Generation Function
Use the following function to generate Ghibli-style images based on your text prompts.
def generate_image(prompt, height=512, width=512, num_inference_steps=50, guidance_scale=3.5, seed=42):
"""Generate a Ghibli-style image from a text prompt."""
# Set random seed for reproducibility
generator = torch.Generator(device=device).manual_seed(int(seed))
# Tokenize and encode the prompt
text_input = tokenizer(
[prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
)
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(device))[0].to(dtype=dtype)
# Encode an empty prompt for classifier-free guidance
uncond_input = tokenizer(
[""], padding="max_length", max_length=text_input.input_ids.shape[-1], return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0].to(dtype=dtype)
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Initialize latent representations
latents = torch.randn(
(1, unet.config.in_channels, height // 8, width // 8),
generator=generator,
dtype=dtype,
device=device
)
# Configure scheduler timesteps
scheduler.set_timesteps(num_inference_steps)
latents = latents * scheduler.init_noise_sigma
# Denoising loop
for t in tqdm(scheduler.timesteps, desc="Generating image"):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
if device.type == "cuda":
with torch.autocast(device_type="cuda", dtype=torch.float16):
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
else:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# Apply classifier-free guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Decode latents to image
with torch.no_grad():
latents = latents / vae.config.scaling_factor
image = vae.decode(latents).sample
# Convert to PIL Image
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).round().astype("uint8")
return Image.fromarray(image[0])
Step 4: Generate Your Image
Craft a vivid prompt and generate your Ghibli-style masterpiece.
# Example prompt
prompt = "a serene landscape in Ghibli style"
# Generate the image
image = generate_image(
prompt=prompt,
height=512,
width=512,
num_inference_steps=50,
guidance_scale=3.5,
seed=42
)
# Display or save the image
image.show() # Or image.save("ghibli_landscape.png")
Environment
The project was developed and tested in the following environment:
- Python Version: 3.11.11
- Dependencies:
Library | Version |
---|---|
huggingface-hub | 0.30.2 |
accelerate | 1.3.0 |
bitsandbytes | 0.45.5 |
torch | 2.5.1 |
Pillow | 11.1.0 |
numpy | 1.26.4 |
transformers | 4.51.1 |
torchvision | 0.20.1 |
diffusers | 0.33.1 |
gradio | Latest |
Ensure your environment matches these specifications to avoid compatibility issues.
- Downloads last month
- 95