Edit model card

llama381binstruct_summarize_short

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3502

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.6893 1.3158 25 1.4438
0.7874 2.6316 50 1.5368
0.4613 3.9474 75 1.5765
0.152 5.2632 100 1.8493
0.08 6.5789 125 2.1247
0.0453 7.8947 150 2.0704
0.0233 9.2105 175 2.1779
0.0148 10.5263 200 2.1609
0.0112 11.8421 225 2.2039
0.0083 13.1579 250 2.2150
0.0081 14.4737 275 2.2033
0.0034 15.7895 300 2.2145
0.0025 17.1053 325 2.2772
0.0015 18.4211 350 2.3073
0.0015 19.7368 375 2.3235
0.0017 21.0526 400 2.3341
0.0012 22.3684 425 2.3415
0.0022 23.6842 450 2.3460
0.0015 25.0 475 2.3494
0.0011 26.3158 500 2.3502

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for danicafisher/llama381binstruct_summarize_short

Adapter
(69)
this model