🩺 DeepSeek 16B Medical GPT (QLoRA Fine-Tuned)
darkknight25/deepseek-16b-medical-GPT
is a fine-tuned version of deepseek-ai/deepseek-l6b-moe-chat, optimized for medical question answering, reasoning, and clinical summarization
using QLoRA and open-access healthcare datasets.
This model uses Mixture-of-Experts (MoE) architecture with QLoRA-based adaptation, unlocking medical domain performance with efficient training.
🧠 Model Details
- Base Model:
deepseek-16b-moe-chat
- Fine-Tuning Method: QLoRA (4-bit quantized)
- Adapter Method: LoRA via
peft
- Trainable Parameters: ~85M
- Quantization: 4-bit NF4 using
bitsandbytes
🧬 Base Model: deepseek-ai/deepseek-moe-16b-chat
- 16B parameter MoE with 2-of-8 experts active per token
- Low inference cost (~6B active)
- Strong reasoning, multi-domain instruction-tuned
- Trained on 2T tokens, multilingual support
🧪 Medical Fine-Tuning Setup
- Technique: QLoRA (4-bit quantization) + LoRA adapters
- Target Modules:
q_proj
,k_proj
,v_proj
,o_proj
- Trainable Params: ~85M
- Batch Size: 4
- Epochs: 2
- Optim:
paged_adamw_8bit
📚 Training Datasets
Fine-tuned using a diverse set of public medical datasets:
Dataset | Description |
---|---|
pubmed_qa |
Biomedical QA pairs |
medmcqa |
Indian medical entrance exam questions |
ccdv/pubmed-summarization |
Clinical note → abstract summaries |
ohsumed |
Medical literature abstracts |
🏥 Use Cases
This model is best suited for:
- Clinical decision support
- Biomedical Q&A
- Medical reasoning
- Summarizing clinical notes
- Patient education bots
🔁 Inference Example
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "darkknight25/deepseek-16b-medical-GPT"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
prompt = "Q: What is the treatment for bacterial meningitis?\nA:"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
🧪 Evaluation (coming soon)
Evaluation on:
MedMCQA (Accuracy %)
PubMedQA (MCQ performance)
USMLE-style clinical cases
Want to contribute eval scripts? PRs welcome.
🔐 License
MIT License (same as base model). Use for research and commercial purposes freely, with proper attribution. 🙏 Acknowledgements
Base model: DeepSeek LLM 16B Chat
Hugging Face PEFT, Datasets, Transformers
Medical datasets: PubMedQA, MedMCQA, PubMed, OHSUMED
🤖 Author
@darkknight25 – Security Researcher | ML Engineer | Medical AI
Want to collaborate on more medical AI projects or build a chatbot? Ping me.
Model tree for darkknight25/deepseek-16b-medical-GPT
Base model
deepseek-ai/deepseek-moe-16b-chat