Datasets:

Modalities:
Text
Formats:
json
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
6cdd292634f145d58a06c9bd9e349a14
dict
040805292d1d4c929cfebdbe0007fff4
dict
1a97e66594d241e9bf2d7e8ff7c967e8
dict
1e2f91cf7085455baea97aa9e975cea0
dict
3cf5cfe07eec41fd928f1933696b35ff
dict
6ca71306801744c48cdb66f6d573258b
dict
885f519b5a2e417c850736d3d9cd0ef3
dict
e28598347055419db23d959dfb13a6f3
dict
857673bc44c8411ca8aca7cab3be7091
dict
8a512d2ca3d546319bbc7aaa696faa45
dict
4c5e4490c71344ffaa34bc4abd0cbc11
dict
590b2cae8e524f17a9ddda685cd3d8c3
dict
0e07ba9a139b4346a302b17aa85f2ee4
dict
0f73d55509644181937da3d41ba5623f
dict
dc39444ce3904ea5bca379b188f65ae0
dict
9580f0eb13814a93985ebc7c051fc910
dict
7f671f35e9ad4149b83451a3a92a6e2e
dict
5f1822bbb40c43b097c4c98ecc697ed2
dict
1414092814104f0d841da6fe02f67c97
dict
ee086eadd38744819350d73b37f0c2fe
dict
e068ea6ae6bb41b4bdb51fda3091e5c4
dict
6382d8d3bd054e05b4d8fc97e15e86af
dict
f82faef8e00d48948f12627b7dd4a836
dict
5fc65fd24ca647388d055dbc122b2c53
dict
3c9f5bd1b5fe416c931ef0b1e284cf0c
dict
63dd568f5bc64e8694d5f4252924c99e
dict
675a63829c2f475da42b187cc86d7ea0
dict
19b198bb18be49498db3b647abebc755
dict
41697300a4c643d089784b8688b2ed2c
dict
6d0e0cd1b1314c4badfcceb5ccbcb5d5
dict
c5b0a81b3f254606b775134123a3e1e2
dict
4a2536980b404fdcb42cb7eff9617e65
dict
5907c0fd28aa49daa2887ed2f3c02abb
dict
49e6306b29c74c679de8cec69473535b
dict
deb4dc75e62346c19c117bf61334eeb5
dict
19919b4a2518487b9c05024eb4277ae2
dict
2e18c1baa9164093ad2e99e0a904363a
dict
3b61335c2a004a9ea31c8dab59471222
dict
66e3384074574d58ba6e9d6969f6eae0
dict
27c79cd96eba4561ab037d01be8828ec
dict
4a72d39a88264d02af6dde464bbcbb5c
dict
da1728266f3149af9d5ac54316d28c8e
dict
801103c094c04f45897be69ef6b27bf9
dict
{"uri":"https://api.sketchfab.com/v3/models/6cdd292634f145d58a06c9bd9e349a14","uid":"6cdd292634f145d(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/040805292d1d4c929cfebdbe0007fff4","uid":"040805292d1d4c9(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/1a97e66594d241e9bf2d7e8ff7c967e8","uid":"1a97e66594d241e(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/1e2f91cf7085455baea97aa9e975cea0","uid":"1e2f91cf7085455(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/3cf5cfe07eec41fd928f1933696b35ff","uid":"3cf5cfe07eec41f(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/6ca71306801744c48cdb66f6d573258b","uid":"6ca71306801744c(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/885f519b5a2e417c850736d3d9cd0ef3","uid":"885f519b5a2e417(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/e28598347055419db23d959dfb13a6f3","uid":"e28598347055419(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/857673bc44c8411ca8aca7cab3be7091","uid":"857673bc44c8411(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/8a512d2ca3d546319bbc7aaa696faa45","uid":"8a512d2ca3d5463(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/4c5e4490c71344ffaa34bc4abd0cbc11","uid":"4c5e4490c71344f(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/590b2cae8e524f17a9ddda685cd3d8c3","uid":"590b2cae8e524f1(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/0e07ba9a139b4346a302b17aa85f2ee4","uid":"0e07ba9a139b434(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/0f73d55509644181937da3d41ba5623f","uid":"0f73d5550964418(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/dc39444ce3904ea5bca379b188f65ae0","uid":"dc39444ce3904ea(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/9580f0eb13814a93985ebc7c051fc910","uid":"9580f0eb13814a9(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/7f671f35e9ad4149b83451a3a92a6e2e","uid":"7f671f35e9ad414(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/5f1822bbb40c43b097c4c98ecc697ed2","uid":"5f1822bbb40c43b(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/1414092814104f0d841da6fe02f67c97","uid":"1414092814104f0(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/ee086eadd38744819350d73b37f0c2fe","uid":"ee086eadd387448(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/e068ea6ae6bb41b4bdb51fda3091e5c4","uid":"e068ea6ae6bb41b(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/6382d8d3bd054e05b4d8fc97e15e86af","uid":"6382d8d3bd054e0(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/f82faef8e00d48948f12627b7dd4a836","uid":"f82faef8e00d489(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/5fc65fd24ca647388d055dbc122b2c53","uid":"5fc65fd24ca6473(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/3c9f5bd1b5fe416c931ef0b1e284cf0c","uid":"3c9f5bd1b5fe416(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/63dd568f5bc64e8694d5f4252924c99e","uid":"63dd568f5bc64e8(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/675a63829c2f475da42b187cc86d7ea0","uid":"675a63829c2f475(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/19b198bb18be49498db3b647abebc755","uid":"19b198bb18be494(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/41697300a4c643d089784b8688b2ed2c","uid":"41697300a4c643d(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/6d0e0cd1b1314c4badfcceb5ccbcb5d5","uid":"6d0e0cd1b1314c4(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/c5b0a81b3f254606b775134123a3e1e2","uid":"c5b0a81b3f25460(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/4a2536980b404fdcb42cb7eff9617e65","uid":"4a2536980b404fd(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/5907c0fd28aa49daa2887ed2f3c02abb","uid":"5907c0fd28aa49d(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/49e6306b29c74c679de8cec69473535b","uid":"49e6306b29c74c6(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/deb4dc75e62346c19c117bf61334eeb5","uid":"deb4dc75e62346c(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/19919b4a2518487b9c05024eb4277ae2","uid":"19919b4a2518487(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/2e18c1baa9164093ad2e99e0a904363a","uid":"2e18c1baa916409(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/3b61335c2a004a9ea31c8dab59471222","uid":"3b61335c2a004a9(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/66e3384074574d58ba6e9d6969f6eae0","uid":"66e3384074574d5(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/27c79cd96eba4561ab037d01be8828ec","uid":"27c79cd96eba456(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/4a72d39a88264d02af6dde464bbcbb5c","uid":"4a72d39a88264d0(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/da1728266f3149af9d5ac54316d28c8e","uid":"da1728266f3149a(...TRUNCATED)
{"uri":"https://api.sketchfab.com/v3/models/801103c094c04f45897be69ef6b27bf9","uid":"801103c094c04f4(...TRUNCATED)

NuiScene43 Dataset

The NuiScene43 dataset offers a curated collection of moderate to large artist-created outdoor scenes, filtered from Objaverse, for training and testing unbounded scene generation methods. We manually unified the scene scales and ground geometry to enable consistent joint training across all 43 scenes. This repo includes the preprocessed occupancy grid and point cloud sampled from scenes for training NuiScene. Please see the dataset page for renderings of the 43 scenes, also the paper or project page for more details.

License

We use the same ODC-By v1.0 license as Objaverse for usage of the dataset as a whole. The individual objects may be under the following licenses:

  • CC-BY 4.0
  • CC-BY-NC 4.0
  • CC-BY-NC-SA 4.0
  • CC-BY-SA 4.0
  • CC0 1.0

We include the metadata from the Objaverse repo for the 43 scenes in metadata/nuiscene43_metadata.json where you can check the licenses for individual scenes.

Citation

If you use our dataset please cite our paper and Objaverse:

@article{lee2025nuiscene,
  title={NuiScene: Exploring efficient generation of unbounded outdoor scenes},
  author={Lee, Han-Hung and Han, Qinghong and Chang, Angel X},
  journal={arXiv preprint arXiv:2503.16375},
  year={2025}
}
@article{objaverse,
  title={Objaverse: A Universe of Annotated 3D Objects},
  author={Matt Deitke and Dustin Schwenk and Jordi Salvador and Luca Weihs and
          Oscar Michel and Eli VanderBilt and Ludwig Schmidt and
          Kiana Ehsani and Aniruddha Kembhavi and Ali Farhadi},
  journal={arXiv preprint arXiv:2212.08051},
  year={2022}
}
Downloads last month
428