Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 12 new columns ({'text_punc', 'emotion', 'gender', 'age', 'spk_num', 'confidence', 'wav_utt_id_timestamp', 'timestamp', 'wav_utt_id_timestamp_path', 'audio_clip_id', 'text', 'wvmos_score'}) and 5 missing columns ({'url', 'utt_id', 'wav_utt_id', 'audio_labels', 'source_audio_path'}).

This happened while the json dataset builder was generating data using

zip://WenetSpeech-Chuan/data1/audio_labels/016000082021_vm0qb.jsonl::/tmp/hf-datasets-cache/medium/datasets/59481183913999-config-parquet-and-info-ASLP-lab-WSC-Train-8826c2cb/hub/datasets--ASLP-lab--WSC-Train/snapshots/387b28255ba33c4f85716e6c06613c8233b2da2b/WenetSpeech-Chuan.zip

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              wav_utt_id_timestamp: string
              wav_utt_id_timestamp_path: string
              audio_clip_id: int64
              timestamp: list<item: double>
                child 0, item: double
              wvmos_score: double
              text: string
              text_punc: string
              spk_num: string
              confidence: double
              emotion: string
              age: string
              gender: string
              to
              {'utt_id': Value('string'), 'wav_utt_id': Value('string'), 'source_audio_path': Value('string'), 'audio_labels': Value('string'), 'url': Value('null')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 12 new columns ({'text_punc', 'emotion', 'gender', 'age', 'spk_num', 'confidence', 'wav_utt_id_timestamp', 'timestamp', 'wav_utt_id_timestamp_path', 'audio_clip_id', 'text', 'wvmos_score'}) and 5 missing columns ({'url', 'utt_id', 'wav_utt_id', 'audio_labels', 'source_audio_path'}).
              
              This happened while the json dataset builder was generating data using
              
              zip://WenetSpeech-Chuan/data1/audio_labels/016000082021_vm0qb.jsonl::/tmp/hf-datasets-cache/medium/datasets/59481183913999-config-parquet-and-info-ASLP-lab-WSC-Train-8826c2cb/hub/datasets--ASLP-lab--WSC-Train/snapshots/387b28255ba33c4f85716e6c06613c8233b2da2b/WenetSpeech-Chuan.zip
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

utt_id
string
wav_utt_id
string
source_audio_path
string
audio_labels
string
url
null
7455997161134656783
016000081990_0ch3e
audio/3087073169907965/7455997161134656783.mp3
jsonls/016000081990_0ch3e.jsonl
null
7313016584707001640
016000082002_D8IsJ
audio/3087073169907965/7313016584707001640.mp3
jsonls/016000082002_D8IsJ.jsonl
null
7242897240748985632
01600008200_dJ8lU
audio/3087073169907965/7242897240748985632.mp3
jsonls/01600008200_dJ8lU.jsonl
null
7252926790019058947
016000082010_JT1aL
audio/3087073169907965/7252926790019058947.mp3
jsonls/016000082010_JT1aL.jsonl
null
7249596952269180198
0160000820_QLlKc
audio/3087073169907965/7249596952269180198.mp3
jsonls/0160000820_QLlKc.jsonl
null
7300434476365073704
016000082015_I85c4
audio/3087073169907965/7300434476365073704.mp3
jsonls/016000082015_I85c4.jsonl
null
7272238333173009664
01600008201_YIbz2
audio/3087073169907965/7272238333173009664.mp3
jsonls/01600008201_YIbz2.jsonl
null
7443704343372565795
016000082019_ZyYfp
audio/3087073169907965/7443704343372565795.mp3
jsonls/016000082019_ZyYfp.jsonl
null
7448096920213507363
016000082021_vm0qb
audio/3087073169907965/7448096920213507363.mp3
jsonls/016000082021_vm0qb.jsonl
null
7435218725650976000
01600008202_2U9bq
audio/3087073169907965/7435218725650976000.mp3
jsonls/01600008202_2U9bq.jsonl
null
7261042071203630399
016000082025_FxSfX
audio/3087073169907965/7261042071203630399.mp3
jsonls/016000082025_FxSfX.jsonl
null
7225190472686341434
016000082027_LBo1z
audio/3087073169907965/7225190472686341434.mp3
jsonls/016000082027_LBo1z.jsonl
null
7238174811401243915
016000082029_QaTOV
audio/3087073169907965/7238174811401243915.mp3
jsonls/016000082029_QaTOV.jsonl
null
7299024042500132148
016000082031_Vl7Fj
audio/3087073169907965/7299024042500132148.mp3
jsonls/016000082031_Vl7Fj.jsonl
null
7349739489532644608
01600008203_VADHN
audio/3087073169907965/7349739489532644608.mp3
jsonls/01600008203_VADHN.jsonl
null
7403145964153883904
016000082034_Utd8m
audio/3087073169907965/7403145964153883904.mp3
jsonls/016000082034_Utd8m.jsonl
null
7320519142249958671
016000082036_CRJE1
audio/3087073169907965/7320519142249958671.mp3
jsonls/016000082036_CRJE1.jsonl
null
7432173935166229775
01600008203_SmC92
audio/3087073169907965/7432173935166229775.mp3
jsonls/01600008203_SmC92.jsonl
null
7215115533610388795
01600008204_Z1r0H
audio/3087073169907965/7215115533610388795.mp3
jsonls/01600008204_Z1r0H.jsonl
null
7279282424972938511
01600008204_b7OHC
audio/3087073169907965/7279282424972938511.mp3
jsonls/01600008204_b7OHC.jsonl
null
7218444188856241463
016000082044_qXGrd
audio/3087073169907965/7218444188856241463.mp3
jsonls/016000082044_qXGrd.jsonl
null
7316750508994202895
01600008204_SpE2A
audio/3087073169907965/7316750508994202895.mp3
jsonls/01600008204_SpE2A.jsonl
null
7314106012783381760
016000082047_akywe
audio/3087073169907965/7314106012783381760.mp3
jsonls/016000082047_akywe.jsonl
null
7477084130619018548
016000082049_3yhSF
audio/3087073169907965/7477084130619018548.mp3
jsonls/016000082049_3yhSF.jsonl
null
7428161259821862179
01600008205_gP3OY
audio/3087073169907965/7428161259821862179.mp3
jsonls/01600008205_gP3OY.jsonl
null
7367946225519185204
016000082053_wIBX9
audio/3087073169907965/7367946225519185204.mp3
jsonls/016000082053_wIBX9.jsonl
null
7392182479177665826
016000082055_wNorY
audio/3087073169907965/7392182479177665826.mp3
jsonls/016000082055_wNorY.jsonl
null
7230008066534624570
016000082057_6iFNS
audio/3087073169907965/7230008066534624570.mp3
jsonls/016000082057_6iFNS.jsonl
null
7357656972964990208
0160000820_5wR1x
audio/3087073169907965/7357656972964990208.mp3
jsonls/0160000820_5wR1x.jsonl
null
7263792414349888779
016000082060_HZ4BW
audio/3087073169907965/7263792414349888779.mp3
jsonls/016000082060_HZ4BW.jsonl
null
7269738030552861971
01600008206_dZWyM
audio/3087073169907965/7269738030552861971.mp3
jsonls/01600008206_dZWyM.jsonl
null
7233383086128418103
01600008206_s42kI
audio/3087073169907965/7233383086128418103.mp3
jsonls/01600008206_s42kI.jsonl
null
7454100497658694946
016000082066_bLrHP
audio/3087073169907965/7454100497658694946.mp3
jsonls/016000082066_bLrHP.jsonl
null
7329750639460797731
016000082068_eCwZs
audio/3087073169907965/7329750639460797731.mp3
jsonls/016000082068_eCwZs.jsonl
null
7297813719172599040
01600008206_3BK1h
audio/3087073169907965/7297813719172599040.mp3
jsonls/01600008206_3BK1h.jsonl
null
7222882630977555749
01600008207_R0hiZ
audio/3087073169907965/7222882630977555749.mp3
jsonls/01600008207_R0hiZ.jsonl
null
7205489791721327909
016000082073_uysQP
audio/3087073169907965/7205489791721327909.mp3
jsonls/016000082073_uysQP.jsonl
null
7290800823024635176
016000082075_sKPNg
audio/3087073169907965/7290800823024635176.mp3
jsonls/016000082075_sKPNg.jsonl
null
7351329901024185652
0160000820_D2gE9
audio/3087073169907965/7351329901024185652.mp3
jsonls/0160000820_D2gE9.jsonl
null
7326900190202449192
016000082078_XrQVS
audio/3087073169907965/7326900190202449192.mp3
jsonls/016000082078_XrQVS.jsonl
null
7219185538115341628
016000082080_T4wgU
audio/3087073169907965/7219185538115341628.mp3
jsonls/016000082080_T4wgU.jsonl
null
7206185035311910204
01600008208_K6GBQ
audio/3087073169907965/7206185035311910204.mp3
jsonls/01600008208_K6GBQ.jsonl
null
7253297636319481121
016000082084_jabor
audio/3087073169907965/7253297636319481121.mp3
jsonls/016000082084_jabor.jsonl
null
7481934951944899892
016000082086_2kJgm
audio/3087073169907965/7481934951944899892.mp3
jsonls/016000082086_2kJgm.jsonl
null
7205857990279269669
01600008208_akM2j
audio/3087073169907965/7205857990279269669.mp3
jsonls/01600008208_akM2j.jsonl
null
7218140796002831653
016000082089_1FJT8
audio/3087073169907965/7218140796002831653.mp3
jsonls/016000082089_1FJT8.jsonl
null
7273336793431379234
01600008209_RdE7q
audio/3087073169907965/7273336793431379234.mp3
jsonls/01600008209_RdE7q.jsonl
null
7335738960586542370
016000082093_jGUQL
audio/3087073169907965/7335738960586542370.mp3
jsonls/016000082093_jGUQL.jsonl
null
7260061748898581772
016000082097_39cro
audio/3087073169907965/7260061748898581772.mp3
jsonls/016000082097_39cro.jsonl
null
7309839446550007080
016000082099_Ayclo
audio/3087073169907965/7309839446550007080.mp3
jsonls/016000082099_Ayclo.jsonl
null
7271526680001383714
016000082100_biGNr
audio/3087073169907965/7271526680001383714.mp3
jsonls/016000082100_biGNr.jsonl
null
7241445370306333956
016000082102_jEXqd
audio/3087073169907965/7241445370306333956.mp3
jsonls/016000082102_jEXqd.jsonl
null
7332731671311043840
016000082104_HrJhv
audio/3087073169907965/7332731671311043840.mp3
jsonls/016000082104_HrJhv.jsonl
null
7205369503994137915
016000082106_Pcw9N
audio/3087073169907965/7205369503994137915.mp3
jsonls/016000082106_Pcw9N.jsonl
null
7323182938617646376
016000082108_I1zEm
audio/3087073169907965/7323182938617646376.mp3
jsonls/016000082108_I1zEm.jsonl
null
7451105451485269283
016000082110_VpLt6
audio/3087073169907965/7451105451485269283.mp3
jsonls/016000082110_VpLt6.jsonl
null
7334556579733327156
01600008211_GrTmt
audio/3087073169907965/7334556579733327156.mp3
jsonls/01600008211_GrTmt.jsonl
null
7450766778306759988
016000082113_A4qZj
audio/3087073169907965/7450766778306759988.mp3
jsonls/016000082113_A4qZj.jsonl
null
7423606600117636352
016000082115_IsdC6
audio/3087073169907965/7423606600117636352.mp3
jsonls/016000082115_IsdC6.jsonl
null
7230704386962492729
01600008211_nKft3
audio/3087073169907965/7230704386962492729.mp3
jsonls/01600008211_nKft3.jsonl
null
7315724827103431976
016000082119_df0jv
audio/3087073169907965/7315724827103431976.mp3
jsonls/016000082119_df0jv.jsonl
null
7444019199464230144
016000082120_E8evR
audio/3087073169907965/7444019199464230144.mp3
jsonls/016000082120_E8evR.jsonl
null
7351627809133055272
016000082122_ybZAN
audio/3087073169907965/7351627809133055272.mp3
jsonls/016000082122_ybZAN.jsonl
null
7231097138829184317
016000082124_z1CRi
audio/3087073169907965/7231097138829184317.mp3
jsonls/016000082124_z1CRi.jsonl
null
7323897958204738816
016000082126_8vPfJ
audio/3087073169907965/7323897958204738816.mp3
jsonls/016000082126_8vPfJ.jsonl
null
7319006737288252706
016000082128_pML8r
audio/3087073169907965/7319006737288252706.mp3
jsonls/016000082128_pML8r.jsonl
null
7307536132676259124
016000082129_6m7xM
audio/3087073169907965/7307536132676259124.mp3
jsonls/016000082129_6m7xM.jsonl
null
7231496894072048957
016000082131_hnrYC
audio/3087073169907965/7231496894072048957.mp3
jsonls/016000082131_hnrYC.jsonl
null
7377594278224219407
016000082133_Y3kHc
audio/3087073169907965/7377594278224219407.mp3
jsonls/016000082133_Y3kHc.jsonl
null
7230304616473283897
016000082135_I0AaV
audio/3087073169907965/7230304616473283897.mp3
jsonls/016000082135_I0AaV.jsonl
null
7321586886131125538
016000082137_8TnjZ
audio/3087073169907965/7321586886131125538.mp3
jsonls/016000082137_8TnjZ.jsonl
null
7294843581351611648
016000082138_UGCOL
audio/3087073169907965/7294843581351611648.mp3
jsonls/016000082138_UGCOL.jsonl
null
7357902075327417652
016000082140_BRhHI
audio/3087073169907965/7357902075327417652.mp3
jsonls/016000082140_BRhHI.jsonl
null
7296338174035414307
016000082142_zmPXY
audio/3087073169907965/7296338174035414307.mp3
jsonls/016000082142_zmPXY.jsonl
null
7352420111162166562
01600008214_NiTwa
audio/3087073169907965/7352420111162166562.mp3
jsonls/01600008214_NiTwa.jsonl
null
7304861229393202472
016000082145_4Pojn
audio/3087073169907965/7304861229393202472.mp3
jsonls/016000082145_4Pojn.jsonl
null
7277427109058989364
016000082147_Gzmp4
audio/3087073169907965/7277427109058989364.mp3
jsonls/016000082147_Gzmp4.jsonl
null
7359758785402899752
016000082149_mLD2l
audio/3087073169907965/7359758785402899752.mp3
jsonls/016000082149_mLD2l.jsonl
null
7264874697714715923
016000082151_ng3qu
audio/3087073169907965/7264874697714715923.mp3
jsonls/016000082151_ng3qu.jsonl
null
7452611904654069026
01600008215_XTjvh
audio/3087073169907965/7452611904654069026.mp3
jsonls/01600008215_XTjvh.jsonl
null
7243024073532443908
01600008215_H1uGK
audio/3087073169907965/7243024073532443908.mp3
jsonls/01600008215_H1uGK.jsonl
null
7253783452313488678
01600008215_FsE7J
audio/3087073169907965/7253783452313488678.mp3
jsonls/01600008215_FsE7J.jsonl
null
7397981859184971060
016000082158_4oLYx
audio/3087073169907965/7397981859184971060.mp3
jsonls/016000082158_4oLYx.jsonl
null
7326073153870908687
016000082160_7yBuE
audio/3087073169907965/7326073153870908687.mp3
jsonls/016000082160_7yBuE.jsonl
null
7350069208354475298
016000082162_iv7ms
audio/3087073169907965/7350069208354475298.mp3
jsonls/016000082162_iv7ms.jsonl
null
7377329326586449204
016000082164_p0kTa
audio/3087073169907965/7377329326586449204.mp3
jsonls/016000082164_p0kTa.jsonl
null
7238924909890604300
01600008216_ow8yV
audio/3087073169907965/7238924909890604300.mp3
jsonls/01600008216_ow8yV.jsonl
null
7251165495028714755
016000082167_9W0kJ
audio/3087073169907965/7251165495028714755.mp3
jsonls/016000082167_9W0kJ.jsonl
null
7337267549006007567
016000082169_wvIRi
audio/3087073169907965/7337267549006007567.mp3
jsonls/016000082169_wvIRi.jsonl
null
7455898350743817506
01600008217_a7DYp
audio/3087073169907965/7455898350743817506.mp3
jsonls/01600008217_a7DYp.jsonl
null
7363496120791682356
016000082172_aVQwW
audio/3087073169907965/7363496120791682356.mp3
jsonls/016000082172_aVQwW.jsonl
null
7208036818942528823
01600008217_pO4uT
audio/3087073169907965/7208036818942528823.mp3
jsonls/01600008217_pO4uT.jsonl
null
7307880379262766336
016000082176_nx7NX
audio/3087073169907965/7307880379262766336.mp3
jsonls/016000082176_nx7NX.jsonl
null
7317195928035675427
01600008217_OcAga
audio/3087073169907965/7317195928035675427.mp3
jsonls/01600008217_OcAga.jsonl
null
7228828938741615930
016000082180_YogIm
audio/3087073169907965/7228828938741615930.mp3
jsonls/016000082180_YogIm.jsonl
null
7428900406664662287
01600008218_InpKf
audio/3087073169907965/7428900406664662287.mp3
jsonls/01600008218_InpKf.jsonl
null
7461827159389146403
016000082183_RObAI
audio/3087073169907965/7461827159389146403.mp3
jsonls/016000082183_RObAI.jsonl
null
7312395092814269731
016000082185_pu4ZC
audio/3087073169907965/7312395092814269731.mp3
jsonls/016000082185_pu4ZC.jsonl
null
7345338195879546147
016000082187_5Xn1G
audio/3087073169907965/7345338195879546147.mp3
jsonls/016000082187_5Xn1G.jsonl
null
7343486398718102836
016000082189_ZnQ3p
audio/3087073169907965/7343486398718102836.mp3
jsonls/016000082189_ZnQ3p.jsonl
null
End of preview.

WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus With Rich Annotation For Dialectal Speech Processing

Yuhang Dai1,*, Ziyu Zhang1,*, Shuai Wang4,5, Longhao Li1, Zhao Guo1, Tianlun Zuo1, Shuiyuan Wang1, Hongfei Xue1, Chengyou Wang1, Qing Wang3, Xin Xu2, Hui Bu2, Jie Li3, Jian Kang3, Binbin Zhang5, Lei Xie1,╀

1 Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University
2 Beijing AISHELL Technology Co., Ltd.
3 Institute of Artificial Intelligence (TeleAI), China Telecom
4 School of Intelligence Science and Technology, Nanjing University
5 WeNet Open Source Community

📑 Paper    |    🐙 GitHub    |    🤗 HuggingFace
🎤 Demo Page    |    💬 Contact Us

Dataset

WenetSpeech-Chuan Overview

  • Contains 10,000 hours of large-scale Chuan-Yu dialect speech corpus with rich annotations, the largest open-source resource for Chuan-Yu dialect speech research.
  • Stores metadata in a single JSON file, including audio path, duration, text confidence, speaker identity, SNR, DNSMOS, age, gender, and character-level timestamps. Additional metadata tags may be added in the future.
  • Covers ten domains: Short videos, Entertainment, Live streams, Documentary, Audiobook, Drama, Interview, News and others.

Metadata Format

We store all audio metadata in a standardized JSON format, where the core fields include utt_id (unique identifier for each audio segment), rover_result (ROVER result of three ASR transcriptions), confidence (confidence score of text transcription), jyutping_confidence (confidence score of Cantonese pinyin transcriptions), and duration (audio duration); speaker attributes include speaker_id, gender, and age; audio quality assessment metrics include sample_rate, DNSMOS, and SNR; timestamp information includes timestamp (precisely recording segment boundaries with start and end); and extended metadata under the meta_info field includes program (program name), region (geographical information), link (original content link), and domain (domain classification).

📂 Content Tree

WenetSpeech-Chuan
├── metadata.jsonl
│
├── audio_labels/
│   ├── wav_utt_id.jsonl
│   ├── wav_utt_id.jsonl
│   ├── ...
│   └── wav_utt_id.jsonl
│
├── .gitattributes
└── README.md

Data sample(CN):

metadata.jsonl

{ "utt_id": 原始长音频id, "wav_utt_id": 转化为wav后的长音频id, "source_audio_path": 原始长音频路径, "audio_labels": 转化后的长音频切分出的短音频标签文件路径, "url": 原始长音频下载链接 }

audio_labels/wav_utt_id.jsonl:

{
"wav_utt_id_timestamp": 以 转化为wav后的长音频id_时间戳信息 作为切分后的短音频id (type: str),
"wav_utt_id_timestamp_path": 短音频数据路径 (type: str),
"audio_clip_id": 该段短音频在长音频中的切分顺序编号,
"timestamp": 时间戳信息,
"wvmos_score": wvmos分数,衡量音频片段质量 (type: float),
"text": 对应时间戳的音频片段的抄本 (type: str),
"text_punc": 带标点的抄本 (type: str),
"spk_num": 音频片段说话人个数,single/multi (type: str)
"confidence": 抄本置信度 (type: float),
"emotion": 说话人情感标签 (type: str,eg: 愤怒),
"age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)),
"gender": 说话人性别标签 (type: str,eg: 男/女),
}

Data sample(EN):

metadata.jsonl

{
"utt_id": Original long audio ID,
"wav_utt_id": Converted long audio ID after transforming to WAV format,
"source_audio_path": Path to the original long audio file,
"audio_labels": Path to the label file of short audio segments cut from the converted long audio,
"url": Download link for the original long audio
}

audio_labels/wav_utt_id.jsonl:

{
"wav_utt_id_timestamp": Short audio segment ID, composed of the converted long audio ID + timestamp information (type: str),
"wav_utt_id_timestamp_path": Path to the short audio data (type: str),
"audio_clip_id": Sequence number of this short segment within the long audio,
"timestamp": Timestamp information,
"wvmos_score": WVMOS score, measuring the quality of the audio segment (type: float),
"text": Transcript of the audio segment corresponding to the timestamp (type: str),
"text_punc": Transcript with punctuation (type: str),
"spk_num": Number of speakers in the audio segment, single/multi (type: str),
"confidence": Confidence score of the transcript (type: float),
"emotion": Speaker’s emotion label (type: str, e.g., anger),
"age": Speaker’s age label (type: int range, e.g., middle-aged (36–59)),
"gender": Speaker’s gender label (type: str, e.g., male/female)
}

WenetSpeech Usage

You can obtain the original video source through the link field in the metadata file (metadata.json). Segment the audio according to the timestamps field to extract the corresponding record. For pre-processed audio data, please contact us using the information provided below.

Contact

If you have any questions or would like to collaborate, feel free to reach out to our research team via email: [email protected] or [email protected].

You’re also welcome to join our WeChat group for technical discussions, updates, and — as mentioned above — access to pre-processed audio data.

WeChat Group QR Code Scan to join our WeChat discussion group

Official Account QR Code

Downloads last month
240

Collection including ASLP-lab/WSC-Train