File size: 20,166 Bytes
bf7f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe3838
 
bf7f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe3838
bf7f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# =================================================================================== #
# ImageNet CLIP Feature Extraction - Download-First Strategy
# Author:AbstractPhil
# 
# Description: Should sufficiently handle preparing imagenet from a repo of choice.
# Formatted for colab - uses userdata to set HF_TOKEN with userdata.get('HF_TOKEN')
# Should run as-is without hassle, but it's a little time consuming.
#
# License: MIT
# =================================================================================== #

import os, json, datetime, time
from pathlib import Path
from typing import Dict, List, Union, Optional, Generator
import torch
import torch.nn.functional as F
from datasets import Dataset, DatasetDict, Features, Value, Sequence
from transformers import CLIPModel
from huggingface_hub import HfApi, HfFolder, create_repo
from google.colab import userdata

# Set your HF_TOKEN here.
HF_TOKEN = userdata.get('HF_TOKEN') # set to os.environ or whatever you want to use.
os.environ["HF_TOKEN"] = HF_TOKEN

import torchvision.transforms.functional as TF
from torch.utils.data import DataLoader


# Configuration for ImageNet-scale processing
CONFIG = {
    "device": "cuda" if torch.cuda.is_available() else "cpu",
    "batch_size": 256,  # A100 can handle much larger batches
    "generator_chunk_size": 5000,  # Process and yield in chunks
    "prefetch_factor": 16,  # DataLoader prefetch
    "persistent_workers": True,  # Keep workers alive
    "num_workers": 2,  # Parallel data loading

    "image_size": 224,
    "vector_dim": 768,
    "normalize_on_gpu": True,
    "clip_mean": (0.48145466, 0.4578275, 0.40821073),
    "clip_std": (0.26862954, 0.26130258, 0.27577711),

    # Memory management for ImageNet scale
    "max_memory_gb": 64,  # Adjust based on available RAM
    "memory_cleanup_interval": 10000,  # Clean memory every N images

    # Output configuration
    "upload_to_hub": False, # set to true if you wish to upload to your repo
    "repo_id": "",          #"AbstractPhil/imagenet-clip-features", # change this to your HF repo, you can't upload to mine.
    "generator_version": "2.0.0",  # Must be x.y.z format

    # Download-first strategy (optimized for multiple models)
    "download_first": True,  # Download entire dataset before processing
    "cache_dir": "./imagenet_cache",  # Where to cache downloaded data
    "keep_dataset_in_memory": False,  # False to save RAM

    "imagenet_repo": "benjamin-paine/imagenet-1k-256x256",
}

# Extended list of CLIP models to process
CLIP_MODELS = [
    # OpenAI CLIP models
    #{"repo_id": "openai/clip-vit-base-patch32", "short_name": "clip_vit_b32", "dim": 512},
    # {"repo_id": "openai/clip-vit-base-patch16", "short_name": "clip_vit_b16", "dim": 512},

    #{"repo_id": "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", "short_name": "clip_vit_laion_b32", "dim": 512},
    #{"repo_id": "openai/clip-vit-large-patch14", "short_name": "clip_vit_l14", "dim": 768},
    #{"repo_id": "openai/clip-vit-large-patch14-336", "short_name": "clip_vit_l14_336", "dim": 768},

    # LAION CLIP models (if you want to add them)
    {"repo_id": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", "short_name": "clip_vit_laion_h14", "dim": 1024},
    #{"repo_id": "laion/CLIP-ViT-g-14-laion2B-s12B-b42K", "short_name": "clip_vit_laion_g14", "dim": 1024},
    # {"repo_id": "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", "short_name": "clip_vit_laion_bigg14", "dim": 1280},

    # You can add more models here
]

TARGET_SPLITS = ["train", "validation", "test"]


class ImageNetClipFeatureExtractor:
    """
    Production-ready CLIP feature extractor optimized for processing multiple models.
    Uses download-first strategy for maximum throughput.
    """

    def __init__(self, config: dict):
        self.cfg = config
        self.device = torch.device(config["device"])
        self._setup_preprocessing()
        self.hf_token = os.environ.get("HF_TOKEN") or userdata.get('HF_TOKEN')
        self.datasets_cache = {}  # Cache loaded datasets

    def _setup_preprocessing(self):
        self._mean = torch.tensor(self.cfg["clip_mean"]).view(1, 3, 1, 1)
        self._std = torch.tensor(self.cfg["clip_std"]).view(1, 3, 1, 1)

    def _download_datasets(self):
        """
        Pre-download all datasets once before processing any models.
        This is called once and datasets are reused for all models.
        """
        from datasets import load_dataset

        print("=" * 60)
        print("πŸ“₯ DOWNLOADING IMAGENET DATASET")
        print("=" * 60)

        for split in TARGET_SPLITS:
            if split not in self.datasets_cache:
                print(f"\n[⏬] Downloading {split} split to {self.cfg['cache_dir']}...")
                start_time = time.time()

                dataset = load_dataset(
                    imagenet_repo, #small tweak to allow setting your own imagenet target repo.
                    split=split,
                    cache_dir=self.cfg["cache_dir"],
                    keep_in_memory=self.cfg["keep_dataset_in_memory"],
                    num_proc=None  # Disable the progress bar noise
                )

                download_time = time.time() - start_time
                print(f"[βœ…] Downloaded {len(dataset)} {split} images in {download_time/60:.1f} minutes")
                if download_time > 0:
                    print(f"[πŸ“Š] Download speed: {len(dataset)/download_time:.1f} images/sec")

                self.datasets_cache[split] = dataset

        print("\n[βœ…] All datasets downloaded and cached!")
        print("=" * 60)

    def _gpu_preprocess(self, images: torch.Tensor) -> torch.Tensor:
        """Memory-efficient GPU preprocessing."""
        if images.dtype != torch.float32:
            images = images.float()

        # Handle both 0-1 and 0-255 ranges
        if images.max() > 1.5:
            images = images / 255.0

        # Resize if needed
        if images.shape[-1] != self.cfg["image_size"]:
            images = F.interpolate(
                images,
                size=(self.cfg["image_size"], self.cfg["image_size"]),
                mode="bilinear",
                align_corners=False
            )

        # Normalize
        if self.cfg["normalize_on_gpu"]:
            mean = self._mean.to(images.device, dtype=images.dtype)
            std = self._std.to(images.device, dtype=images.dtype)
            images = (images - mean) / std

        return images

    def _collate_fn(self, batch):
        """Custom collate function for DataLoader."""
        import hashlib
        images = []
        labels = []
        image_ids = []

        for item in batch:
            image = item['image']
            if image.mode != 'RGB':
                image = image.convert('RGB')

            # Convert to tensor [3, H, W]
            image_tensor = TF.to_tensor(image)

            # Generate SHA256 hash of the image
            image_bytes = image.tobytes()
            sha256_hash = hashlib.sha256(image_bytes).hexdigest()

            images.append(image_tensor)
            labels.append(item.get('label', -1))
            image_ids.append(sha256_hash)

        return {
            'images': torch.stack(images),
            'labels': labels,
            'image_ids': image_ids
        }

    def _imagenet_generator_optimized(self, split: str, model_id: str) -> Generator[Dict, None, None]:
        """
        Optimized generator using pre-downloaded data and DataLoader for parallel loading.
        """
        # Use cached dataset
        dataset = self.datasets_cache[split]

        # Create DataLoader for efficient parallel loading
        dataloader = DataLoader(
            dataset,
            batch_size=self.cfg["batch_size"],
            shuffle=False,  # Keep order for reproducibility
            num_workers=self.cfg["num_workers"],
            prefetch_factor=self.cfg["prefetch_factor"],
            persistent_workers=self.cfg["persistent_workers"],
            collate_fn=self._collate_fn,
            pin_memory=True  # Faster GPU transfer
        )

        # Load CLIP model
        print(f"\n[πŸ€–] Loading {model_id}")
        model = CLIPModel.from_pretrained(model_id).to(self.device)
        model.eval()

        # Setup for chunked processing
        chunk_buffer = []
        timestamp = datetime.datetime.now(datetime.timezone.utc)
        images_processed = 0
        start_time = time.time()
        last_print_time = start_time
        print_interval = 10  # Print progress every 10 seconds

        try:
            with torch.no_grad():
                for batch_idx, batch in enumerate(dataloader):
                    # Move batch to GPU
                    image_batch = batch['images'].to(self.device, non_blocking=True)
                    labels = batch['labels']
                    image_ids = batch['image_ids']

                    # Preprocess on GPU
                    image_batch = self._gpu_preprocess(image_batch)

                    # Extract features
                    features = model.get_image_features(pixel_values=image_batch)
                    features = features / features.norm(dim=-1, keepdim=True)

                    # Create records
                    for img_id, label, feature_vec in zip(image_ids, labels, features):
                        chunk_buffer.append({
                            "image_id": img_id,  # Now using SHA256 hash
                            "label": int(label),
                            "clip_model": model_id,
                            "clip_features": feature_vec.detach().cpu().float().numpy().tolist(),
                            "vector_dim": features.shape[-1],
                            "timestamp": timestamp,
                        })

                    images_processed += len(image_ids)

                    # Print progress at regular time intervals
                    current_time = time.time()
                    if current_time - last_print_time >= print_interval:
                        elapsed = current_time - start_time
                        speed = images_processed / elapsed
                        eta = (len(dataset) - images_processed) / speed
                        print(f"[⚑] Progress: {images_processed}/{len(dataset)} "
                              f"({100*images_processed/len(dataset):.1f}%) | "
                              f"Speed: {speed:.1f} img/sec | "
                              f"ETA: {eta/60:.1f} min")
                        last_print_time = current_time

                    # Yield chunk when it reaches configured size
                    if len(chunk_buffer) >= self.cfg["generator_chunk_size"]:
                        elapsed = time.time() - start_time
                        speed = images_processed / elapsed
                        print(f"[πŸ“¦] Yielding chunk of {len(chunk_buffer)} features | "
                              f"Progress: {images_processed}/{len(dataset)} "
                              f"({100*images_processed/len(dataset):.1f}%)")
                        yield from chunk_buffer
                        chunk_buffer = []

                    # Memory cleanup at configured interval
                    if images_processed % self.cfg["memory_cleanup_interval"] == 0:
                        torch.cuda.empty_cache()

                # Yield remaining chunk buffer
                if chunk_buffer:
                    print(f"[πŸ“¦] Final chunk of {len(chunk_buffer)} features")
                    yield from chunk_buffer

                # Final stats
                total_time = time.time() - start_time
                print(f"\n[βœ…] Processed {images_processed} images in {total_time/60:.1f} minutes")
                print(f"[πŸ“Š] Average speed: {images_processed/total_time:.1f} images/sec")

        finally:
            del model
            torch.cuda.empty_cache()

    def extract_and_upload(self, model_config: dict, split: str = "train"):
        """
        Extract features using optimized generator and upload to HuggingFace.
        Returns the dataset if upload fails for retry purposes.
        """
        model_id = model_config["repo_id"]
        short_name = model_config["short_name"]

        print("\n" + "=" * 60)
        print(f"βš™οΈ  PROCESSING: {short_name} - {split}")
        print("=" * 60)

        # Define dataset features
        features = Features({
            "image_id": Value("string"),
            "label": Value("int32"),
            "clip_model": Value("string"),
            "clip_features": Sequence(Value("float32")),
            "vector_dim": Value("int32"),
            "timestamp": Value("timestamp[ns]"),
        })

        # Suppress the "Generating split" progress bar
        import sys
        import io
        old_stderr = sys.stderr
        sys.stderr = io.StringIO()

        try:
            # Create dataset from generator
            dataset = Dataset.from_generator(
                lambda: self._imagenet_generator_optimized(split, model_id),
                features=features,
                writer_batch_size=self.cfg["generator_chunk_size"],
                split=split
            )
        except Exception as e:
            raise Exception(e)
        #finally:
        #    # Restore stderr
        #    sys.stderr = old_stderr
        #    return

        # Add metadata
        dataset.info.description = f"CLIP features for ImageNet-1k 256x256 {split} using {model_id}"
        dataset.info.version = self.cfg["generator_version"]

        # Save to disk before upload (safety backup)
        temp_path = f"./temp_dataset_{short_name}_{split}"
        print(f"[πŸ’Ύ] Saving dataset to {temp_path} for safety...")
        dataset.save_to_disk(temp_path)

        # Upload to HuggingFace
        split_name = f"{short_name}_{split}"

        print(f"\n[πŸ“€] Uploading {split_name} to {self.cfg['repo_id']}")
        try:
            dataset.push_to_hub(
                self.cfg["repo_id"],
                split=split_name,
                token=self.hf_token,
                commit_message=f"Add {split_name} CLIP features",
                max_shard_size="500MB"
            )
            print(f"[βœ…] Successfully uploaded {split_name}")

            # Clean up temp file on success
            import shutil
            shutil.rmtree(temp_path, ignore_errors=True)
            return None

        except Exception as e:
            print(f"[❌] Upload failed for {split_name}: {e}")
            print(f"[πŸ’‘] Dataset saved at {temp_path} - you can retry upload with:")
            print(f"    from datasets import load_from_disk")
            print(f"    dataset = load_from_disk('{temp_path}')")
            print(f"    dataset.push_to_hub('{self.cfg['repo_id']}', split='{split_name}', ...)")
            return dataset  # Return dataset for potential retry

    def extract_all_models(self, models_to_process=None):
        """
        Extract features for all models and splits.

        Args:
            models_to_process: List of model configs to process (default: all)
        """
        # Ensure repo exists
        if self.hf_token:
            try:
                create_repo(self.cfg["repo_id"], repo_type="dataset", exist_ok=True, token=self.hf_token)
                print(f"[βœ…] Repository ready: {self.cfg['repo_id']}")
            except Exception as e:
                print(f"[⚠️] Repo creation warning: {e}")

        # Download all data first (once for all models)
        self._download_datasets()

        # Process specified models or all
        models = models_to_process or CLIP_MODELS
        total_combinations = len(models) * 2  # train + validation

        print("\n" + "=" * 60)
        print(f"πŸ“‹ PROCESSING PLAN: {len(models)} models Γ— 2 splits = {total_combinations} tasks")
        print("=" * 60)

        # Keep track of failed uploads for retry
        failed_uploads = []

        for i, model_config in enumerate(models, 1):
            print(f"\n[{i}/{len(models)}] Model: {model_config['short_name']}")

            for split in TARGET_SPLITS: #"train", "test"]:
                try:
                    dataset = self.extract_and_upload(model_config, split)
                    if dataset is not None:
                        # Upload failed but we have the dataset
                        failed_uploads.append({
                            'model': model_config['short_name'],
                            'split': split,
                            'dataset': dataset,
                            'path': f"./temp_dataset_{model_config['short_name']}_{split}"
                        })
                except Exception as e:
                    print(f"[❌] Failed {model_config['short_name']} {split}: {e}")
                    continue

            # Cleanup between models
            torch.cuda.empty_cache()

        print("\n" + "=" * 60)
        if failed_uploads:
            print(f"⚠️  PROCESSING COMPLETE WITH {len(failed_uploads)} FAILED UPLOADS")
            print("\nFailed uploads saved to disk:")
            for failure in failed_uploads:
                print(f"  - {failure['model']}_{failure['split']}: {failure['path']}")
            print("\nYou can retry these uploads after fixing the issue.")
        else:
            print("πŸŽ‰ ALL PROCESSING COMPLETE!")
        print("=" * 60)

        return failed_uploads  # Return list of failed uploads for retry


# ============================================================
# Utility Functions
# ============================================================

def estimate_processing_time(num_models=len(CLIP_MODELS)):
    """
    Estimate total processing time for all models.
    """
    print("=" * 60)
    print("⏱️  TIME ESTIMATES")
    print("=" * 60)

    # Dataset sizes
    train_size = 1_281_167
    val_size = 50_000
    total_images = train_size + val_size

    # Time estimates
    download_time_min = 60  # minutes
    download_time_max = 120

    # Processing speeds (images/sec)
    speed_min = 800
    speed_max = 1200

    print(f"\nπŸ“Š Dataset sizes:")
    print(f"  - Train: {train_size:,} images")
    print(f"  - Validation: {val_size:,} images")
    print(f"  - Total per model: {total_images:,} images")

    print(f"\n⏬ Download time (one-time):")
    print(f"  - Estimated: {download_time_min}-{download_time_max} minutes")

    print(f"\nπŸš€ Processing speed:")
    print(f"  - Expected: {speed_min}-{speed_max} images/sec")

    # Per model
    time_per_model_min = total_images / speed_max / 60
    time_per_model_max = total_images / speed_min / 60

    print(f"\n⏱️  Per model:")
    print(f"  - Processing time: {time_per_model_min:.1f}-{time_per_model_max:.1f} minutes")

    # Total
    total_min = download_time_min + (num_models * time_per_model_min)
    total_max = download_time_max + (num_models * time_per_model_max)

    print(f"\n🎯 Total for {num_models} models:")
    print(f"  - Total time: {total_min:.1f}-{total_max:.1f} minutes")
    print(f"  - Or: {total_min/60:.1f}-{total_max/60:.1f} hours")

    print("\nπŸ’‘ Tips:")
    print("  - Processing is GPU-bound, so better GPUs = faster")
    print("  - A100/H100 can use batch_size=1024+ for more speed")
    print("  - Multiple GPUs can process different models in parallel")
    print("=" * 60)


# ============================================================
# Main Execution
# ============================================================
"""
Main execution for multi-model ImageNet CLIP feature extraction.
"""
# Show time estimates
estimate_processing_time()

# Confirm settings
print(f"\nπŸ”§ Current configuration:")
print(f"  - Batch size: {CONFIG['batch_size']}")
print(f"  - Chunk size: {CONFIG['generator_chunk_size']}")
print(f"  - Workers: {CONFIG['num_workers']}")
print(f"  - Models to process: {len(CLIP_MODELS)}")

# Option to process subset of models
# For testing, you might want to start with just one:
# test_models = CLIP_MODELS[:1]  # Just first model
# extractor.extract_all_models(models_to_process=test_models)

# Run extraction
extractor = ImageNetClipFeatureExtractor(CONFIG)
extractor.extract_all_models()  # Process all models