|
--- |
|
dataset_info: |
|
features: |
|
- name: query |
|
dtype: string |
|
- name: positive_passages |
|
sequence: string |
|
- name: negative_passages |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 361146987 |
|
num_examples: 398398 |
|
- name: dev |
|
num_bytes: 14493923 |
|
num_examples: 4030 |
|
- name: test |
|
num_bytes: 10891808 |
|
num_examples: 6795 |
|
download_size: 153841910 |
|
dataset_size: 386532718 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: dev |
|
path: data/dev-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
# Dataset Detail |
|
this dataset is processed from 3 source of thai dataset consist of |
|
- miracl/miracl |
|
- facebook/xnli |
|
- castorini/mr-tydi |
|
- castorini/mr-tydi-corpus |
|
## processing script |
|
here is the precessing script I use |
|
### miracl/miracl |
|
```python |
|
def create_miracl_datasets(datasets): |
|
""" |
|
nothing just extract texts |
|
""" |
|
datasets_ = { |
|
'query': [], |
|
'positive_passages': [], |
|
'negative_passages': [], |
|
} |
|
for data in tqdm(datasets): |
|
datasets_['query'].append(data['query']) |
|
negative_passages = [] |
|
for negative_passage in data['negative_passages']: |
|
negative_passages.append(negative_passage['text']) |
|
datasets_['negative_passages'].append(negative_passages) |
|
positive_passages = [] |
|
for positive_passage in data['positive_passages']: |
|
positive_passages.append(positive_passage['text']) |
|
datasets_['positive_passages'].append(positive_passages) |
|
return Dataset.from_dict(datasets_) |
|
``` |
|
ratio |
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 2972 |
|
}) |
|
eval: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 366 |
|
}) |
|
test: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 367 |
|
}) |
|
}) |
|
``` |
|
|
|
### facebook/xnli |
|
```python |
|
def create_xnli_datasets(datasets): |
|
""" |
|
transform format of ['premise', 'hypothesis', 'label'] to ['query', 'positive_passages', 'negative_passages'] |
|
using contradiction as negative passage pair and |
|
neutral, entailment -> possitive passage pair |
|
premise as passage (premise -> evidence) |
|
hypothesis as query (hypothesis so called question so can be used as query) |
|
""" |
|
datasets_ = { |
|
'query': [], |
|
'positive_passages': [], |
|
'negative_passages': [] |
|
} |
|
for data in tqdm(datasets): |
|
datasets_['query'].append(data['premise']) |
|
if data['label'] == 'contradiction': |
|
datasets_['positive_passages'].append([]) |
|
datasets_['negative_passages'].append([data['hypothesis']]) |
|
elif data['label'] == 'neutral' or 'entailment': |
|
datasets_['positive_passages'].append([data['hypothesis']]) |
|
datasets_['negative_passages'].append([]) |
|
return Dataset.from_dict(datasets_) |
|
``` |
|
ratio |
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 392702 |
|
}) |
|
eval: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 2490 |
|
}) |
|
test: Dataset({ |
|
features: ['query', 'positive_passages', 'negative_passages'], |
|
num_rows: 5010 |
|
}) |
|
}) |
|
``` |
|
|
|
### castorini/mr-tydi |
|
```python |
|
def create_tydi_datasets(datasets, corpus, train = False): |
|
""" |
|
both dev, test set have only docid which may can be retrieve from the corpus |
|
""" |
|
cor_df = corpus.to_pandas() |
|
datasets_ = { |
|
'query': [], |
|
'positive_passages': [], |
|
'negative_passages': [], |
|
} |
|
for data in tqdm(datasets): |
|
datasets_['query'].append(data['query']) |
|
if train: |
|
negative_passages = [] |
|
for negative_passage in data['negative_passages']: |
|
negative_passages.append(negative_passage['text']) |
|
datasets_['negative_passages'].append(negative_passages) |
|
else: |
|
datasets_['negative_passages'].append([]) |
|
positive_passages = [] |
|
for positive_passage in data['positive_passages']: |
|
search_value = positive_passage['docid'] |
|
text = cor_df[cor_df["docid"] == search_value].text.values[0] |
|
# if text.empty: |
|
# continue |
|
positive_passages.append(text) |
|
datasets_['positive_passages'].append(positive_passages) |
|
return Dataset.from_dict(datasets_) |
|
``` |
|
|
|
ratio |
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['query_id', 'query', 'positive_passages', 'negative_passages'], |
|
num_rows: 3319 |
|
}) |
|
dev: Dataset({ |
|
features: ['query_id', 'query', 'positive_passages', 'negative_passages'], |
|
num_rows: 807 |
|
}) |
|
test: Dataset({ |
|
features: ['query_id', 'query', 'positive_passages', 'negative_passages'], |
|
num_rows: 1190 |
|
}) |
|
}) |
|
``` |