Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
62
558
label
class label
28 classes
image_hash
stringlengths
12
12
product_name
stringclasses
28 values
sample_id
stringclasses
2 values
0rocher_chocolate
471ac3c396c0
rocher_chocolate
3
22sensodyne_mouthwash
9887ffa49365
sensodyne_mouthwash
3
24rexona_spray
5eedffd4023c
rexona_spray
2
12monster_energydrink
92ba1c5048c1
monster_energydrink
2
22sensodyne_mouthwash
0a1603264692
sensodyne_mouthwash
2
26nivea_baby
68b5d019be68
nivea_baby
2
21colgate_toothpaste
60634cff2016
colgate_toothpaste
2
0rocher_chocolate
5b8167b826aa
rocher_chocolate
2
23nivea_rollon
d90e666f7af3
nivea_rollon
3
14heinz_mayo
5d35028a2b5b
heinz_mayo
3
2kinder_chocolate
a2af47c20df1
kinder_chocolate
2
25dove_spray
d5bb9e52bd14
dove_spray
3
10sanpellegrino_water
66bf8ac97df5
sanpellegrino_water
3
9nestle_water
c5cd12942958
nestle_water
2
20sensodyne_toothpaste
41c47dc54bfa
sensodyne_toothpaste
3
25dove_spray
7218bc2d0b45
dove_spray
3
22sensodyne_mouthwash
0af7a0b62068
sensodyne_mouthwash
3
3toblerone_white
f457dc3fbb02
toblerone_white
3
17barilla_lasagne
f47930c4f581
barilla_lasagne
2
5lays_classic
7b92d99c69df
lays_classic
3
15barilla_pesto
da732eb40ed3
barilla_pesto
3
9nestle_water
1cca78818118
nestle_water
3
27johnson_baby
d689a58e56a0
johnson_baby
3
17barilla_lasagne
fe25e6456fb0
barilla_lasagne
3
3toblerone_white
ab2560479ca4
toblerone_white
3
14heinz_mayo
7c21694ebbca
heinz_mayo
3
8pringles_paprika
2ef21d3390b2
pringles_paprika
2
7pringles_original
524d548e5479
pringles_original
3
6lays_chill
1768e0e04c75
lays_chill
2
12monster_energydrink
fca88140049c
monster_energydrink
2
6lays_chill
35e03e56c352
lays_chill
3
21colgate_toothpaste
9c6df3c42a00
colgate_toothpaste
3
2kinder_chocolate
7ef8689f70f6
kinder_chocolate
3
11redbull_energydrink
d107ed2208b3
redbull_energydrink
2
4toblerone_black
03515ba2b533
toblerone_black
3
21colgate_toothpaste
bb588e213095
colgate_toothpaste
3
9nestle_water
69065bbadd93
nestle_water
3
0rocher_chocolate
3664738d9bc0
rocher_chocolate
3
9nestle_water
afe3ff435a7f
nestle_water
3
22sensodyne_mouthwash
66af1ad1c123
sensodyne_mouthwash
3
10sanpellegrino_water
f9e578b6086b
sanpellegrino_water
2
2kinder_chocolate
0b3bc559abba
kinder_chocolate
3
13heinz_ketchup
6a560274ec18
heinz_ketchup
3
12monster_energydrink
30ce6bc071b1
monster_energydrink
3
22sensodyne_mouthwash
839701eb0e66
sensodyne_mouthwash
2
20sensodyne_toothpaste
4d0d25bccfa2
sensodyne_toothpaste
3
18loreal_shampoo
959f0f9d3860
loreal_shampoo
3
21colgate_toothpaste
d9d7f26ed692
colgate_toothpaste
3
14heinz_mayo
6c445c6ccd94
heinz_mayo
3
6lays_chill
dce9b114be0c
lays_chill
2
9nestle_water
f01b712a178e
nestle_water
2
2kinder_chocolate
2a8bbb6362d2
kinder_chocolate
2
10sanpellegrino_water
826a652c0c48
sanpellegrino_water
3
14heinz_mayo
79ea7459f629
heinz_mayo
3
7pringles_original
2694b50ac9d9
pringles_original
2
23nivea_rollon
a469397eee56
nivea_rollon
2
22sensodyne_mouthwash
fa53e50319d8
sensodyne_mouthwash
2
20sensodyne_toothpaste
cb2be20afcb4
sensodyne_toothpaste
2
24rexona_spray
bc4e1b226e6b
rexona_spray
3
22sensodyne_mouthwash
9bd9216b4a5a
sensodyne_mouthwash
3
26nivea_baby
cfd423e901f1
nivea_baby
3
23nivea_rollon
885059e1b252
nivea_rollon
3
0rocher_chocolate
e03fa5462ee3
rocher_chocolate
3
26nivea_baby
b100c54366ba
nivea_baby
2
27johnson_baby
775c598d2cea
johnson_baby
2
1milka_chocolate
9a4fa62869fe
milka_chocolate
2
1milka_chocolate
a7e2b455335a
milka_chocolate
3
0rocher_chocolate
866669da7731
rocher_chocolate
3
4toblerone_black
9151a255fe58
toblerone_black
2
6lays_chill
15338989dbf0
lays_chill
2
7pringles_original
5a1c3efa27ba
pringles_original
2
20sensodyne_toothpaste
c31de9e343b9
sensodyne_toothpaste
2
14heinz_mayo
dc3570dac19b
heinz_mayo
3
18loreal_shampoo
d5a3f00c52d7
loreal_shampoo
2
14heinz_mayo
750c853b7a14
heinz_mayo
3
19dove_soap
50fc66d37b9c
dove_soap
2
5lays_classic
a2f2c31638db
lays_classic
2
5lays_classic
9a9a588838c3
lays_classic
2
25dove_spray
f4cf8fa9b44c
dove_spray
2
9nestle_water
1b1ef5406a31
nestle_water
3
18loreal_shampoo
37d819460751
loreal_shampoo
3
6lays_chill
80218a5ef101
lays_chill
3
27johnson_baby
08c1e5333e14
johnson_baby
2
13heinz_ketchup
2a53fe8ba9d6
heinz_ketchup
3
21colgate_toothpaste
a87598eeaa32
colgate_toothpaste
2
1milka_chocolate
58396f87dae0
milka_chocolate
3
26nivea_baby
d487479885e8
nivea_baby
3
1milka_chocolate
a23782860b8e
milka_chocolate
2
7pringles_original
0131204beb3e
pringles_original
3
21colgate_toothpaste
f61580c90f2a
colgate_toothpaste
2
1milka_chocolate
eef168a4b0db
milka_chocolate
2
3toblerone_white
c62f6534ebab
toblerone_white
2
16barilla_pomodoro
5518f101e847
barilla_pomodoro
3
2kinder_chocolate
83ebbd3c5789
kinder_chocolate
3
0rocher_chocolate
a5be55766201
rocher_chocolate
3
11redbull_energydrink
e02bcaed23f6
redbull_energydrink
2
7pringles_original
250d27caf0ec
pringles_original
3
26nivea_baby
82a4817ada4d
nivea_baby
3
20sensodyne_toothpaste
e6aa23e79f96
sensodyne_toothpaste
2
14heinz_mayo
987ddc9395c9
heinz_mayo
2
End of preview. Expand in Data Studio

Micro Market Experience (MIMEX) Product Recognition Dataset

Dataset Description

The Micro Market Experience (MIMEX) Dataset is a comprehensive collection of product images tailored for retail and consumer product classification tasks. This dataset encompasses 15,277 images across 28 product categories, including chocolates, snacks, beverages, personal care items, and food products.

Dataset Features

  • Total Images: 15,277
  • Number of Classes: 28
  • Splits: Train (10,357) / Test (4,920)
  • Image Format: PNG, RGB
  • Resolution: Variable (original product images)

Product Categories

The dataset includes the following 28 product categories:

  • 0: Rocher Chocolate
  • 1: Milka Chocolate
  • 2: Kinder Chocolate
  • 3: Toblerone White
  • 4: Toblerone Black
  • 5: Lays Classic
  • 6: Lays Chill
  • 7: Pringles Original
  • 8: Pringles Paprika
  • 9: Nestle Water
  • 10: Sanpellegrino Water
  • 11: Redbull Energydrink
  • 12: Monster Energydrink
  • 13: Heinz Ketchup
  • 14: Heinz Mayo
  • 15: Barilla Pesto
  • 16: Barilla Pomodoro
  • 17: Barilla Lasagne
  • 18: Loreal Shampoo
  • 19: Dove Soap
  • 20: Sensodyne Toothpaste
  • 21: Colgate Toothpaste
  • 22: Sensodyne Mouthwash
  • 23: Nivea Rollon
  • 24: Rexona Spray
  • 25: Dove Spray
  • 26: Nivea Baby
  • 27: Johnson Baby

Dataset Structure

mimex-dataset/
β”œβ”€β”€ train/           # Training images (10,357 samples)
β”œβ”€β”€ test/            # Test images (4,920 samples)
└── metadata/        # Dataset information and mappings

Data Fields

  • image: PIL Image of the product
  • label: Integer class label (0-27)
  • image_hash: Unique 12-character hash identifier
  • product_name: Human-readable product name
  • sample_id: Original sample identifier from source dataset

How to Use

Loading the Dataset

from datasets import load_dataset

# Load the full dataset
dataset = load_dataset("Anilot/MIMEX")

# Load specific split
train_dataset = load_dataset("Anilot/MIMEX", split="train")
test_dataset = load_dataset("Anilot/MIMEX", split="test")

print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")

Basic Usage Example

import matplotlib.pyplot as plt
from datasets import load_dataset

# Load dataset
dataset = load_dataset("Anilot/MIMEX", split="train")

# Show first few samples
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
for i, ax in enumerate(axes.flat):
    sample = dataset[i]
    ax.imshow(sample['image'])
    ax.set_title(f"{sample['product_name']}\nLabel: {sample['label']}")
    ax.axis('off')
plt.tight_layout()
plt.show()

License

This dataset is released under the MIT License. Please cite appropriately if used in research.

Citation

If you use this dataset in your research, please cite:

Tur, Anil Osman, et al. "Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models." 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI). IEEE, 2024.

DOI: 10.1109/RTSI61910.2024.10761839

BibTeX

@inproceedings{tur2024exploring,
  title={Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models},
  author={Tur, Anil Osman and Conti, Alessandro and Beyan, Cigdem and Boscaini, Davide and Larcher, Roberto and Messelodi, Stefano and Poiesi, Fabio and Ricci, Elisa},
  booktitle={2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI)},
  pages={97--102},
  year={2024},
  organization={IEEE}
}
Downloads last month
9