Datasets:
Dataset Viewer
image
imagewidth (px) 62
558
| label
class label 28
classes | image_hash
stringlengths 12
12
| product_name
stringclasses 28
values | sample_id
stringclasses 2
values |
---|---|---|---|---|
0rocher_chocolate
|
471ac3c396c0
|
rocher_chocolate
|
3
|
|
22sensodyne_mouthwash
|
9887ffa49365
|
sensodyne_mouthwash
|
3
|
|
24rexona_spray
|
5eedffd4023c
|
rexona_spray
|
2
|
|
12monster_energydrink
|
92ba1c5048c1
|
monster_energydrink
|
2
|
|
22sensodyne_mouthwash
|
0a1603264692
|
sensodyne_mouthwash
|
2
|
|
26nivea_baby
|
68b5d019be68
|
nivea_baby
|
2
|
|
21colgate_toothpaste
|
60634cff2016
|
colgate_toothpaste
|
2
|
|
0rocher_chocolate
|
5b8167b826aa
|
rocher_chocolate
|
2
|
|
23nivea_rollon
|
d90e666f7af3
|
nivea_rollon
|
3
|
|
14heinz_mayo
|
5d35028a2b5b
|
heinz_mayo
|
3
|
|
2kinder_chocolate
|
a2af47c20df1
|
kinder_chocolate
|
2
|
|
25dove_spray
|
d5bb9e52bd14
|
dove_spray
|
3
|
|
10sanpellegrino_water
|
66bf8ac97df5
|
sanpellegrino_water
|
3
|
|
9nestle_water
|
c5cd12942958
|
nestle_water
|
2
|
|
20sensodyne_toothpaste
|
41c47dc54bfa
|
sensodyne_toothpaste
|
3
|
|
25dove_spray
|
7218bc2d0b45
|
dove_spray
|
3
|
|
22sensodyne_mouthwash
|
0af7a0b62068
|
sensodyne_mouthwash
|
3
|
|
3toblerone_white
|
f457dc3fbb02
|
toblerone_white
|
3
|
|
17barilla_lasagne
|
f47930c4f581
|
barilla_lasagne
|
2
|
|
5lays_classic
|
7b92d99c69df
|
lays_classic
|
3
|
|
15barilla_pesto
|
da732eb40ed3
|
barilla_pesto
|
3
|
|
9nestle_water
|
1cca78818118
|
nestle_water
|
3
|
|
27johnson_baby
|
d689a58e56a0
|
johnson_baby
|
3
|
|
17barilla_lasagne
|
fe25e6456fb0
|
barilla_lasagne
|
3
|
|
3toblerone_white
|
ab2560479ca4
|
toblerone_white
|
3
|
|
14heinz_mayo
|
7c21694ebbca
|
heinz_mayo
|
3
|
|
8pringles_paprika
|
2ef21d3390b2
|
pringles_paprika
|
2
|
|
7pringles_original
|
524d548e5479
|
pringles_original
|
3
|
|
6lays_chill
|
1768e0e04c75
|
lays_chill
|
2
|
|
12monster_energydrink
|
fca88140049c
|
monster_energydrink
|
2
|
|
6lays_chill
|
35e03e56c352
|
lays_chill
|
3
|
|
21colgate_toothpaste
|
9c6df3c42a00
|
colgate_toothpaste
|
3
|
|
2kinder_chocolate
|
7ef8689f70f6
|
kinder_chocolate
|
3
|
|
11redbull_energydrink
|
d107ed2208b3
|
redbull_energydrink
|
2
|
|
4toblerone_black
|
03515ba2b533
|
toblerone_black
|
3
|
|
21colgate_toothpaste
|
bb588e213095
|
colgate_toothpaste
|
3
|
|
9nestle_water
|
69065bbadd93
|
nestle_water
|
3
|
|
0rocher_chocolate
|
3664738d9bc0
|
rocher_chocolate
|
3
|
|
9nestle_water
|
afe3ff435a7f
|
nestle_water
|
3
|
|
22sensodyne_mouthwash
|
66af1ad1c123
|
sensodyne_mouthwash
|
3
|
|
10sanpellegrino_water
|
f9e578b6086b
|
sanpellegrino_water
|
2
|
|
2kinder_chocolate
|
0b3bc559abba
|
kinder_chocolate
|
3
|
|
13heinz_ketchup
|
6a560274ec18
|
heinz_ketchup
|
3
|
|
12monster_energydrink
|
30ce6bc071b1
|
monster_energydrink
|
3
|
|
22sensodyne_mouthwash
|
839701eb0e66
|
sensodyne_mouthwash
|
2
|
|
20sensodyne_toothpaste
|
4d0d25bccfa2
|
sensodyne_toothpaste
|
3
|
|
18loreal_shampoo
|
959f0f9d3860
|
loreal_shampoo
|
3
|
|
21colgate_toothpaste
|
d9d7f26ed692
|
colgate_toothpaste
|
3
|
|
14heinz_mayo
|
6c445c6ccd94
|
heinz_mayo
|
3
|
|
6lays_chill
|
dce9b114be0c
|
lays_chill
|
2
|
|
9nestle_water
|
f01b712a178e
|
nestle_water
|
2
|
|
2kinder_chocolate
|
2a8bbb6362d2
|
kinder_chocolate
|
2
|
|
10sanpellegrino_water
|
826a652c0c48
|
sanpellegrino_water
|
3
|
|
14heinz_mayo
|
79ea7459f629
|
heinz_mayo
|
3
|
|
7pringles_original
|
2694b50ac9d9
|
pringles_original
|
2
|
|
23nivea_rollon
|
a469397eee56
|
nivea_rollon
|
2
|
|
22sensodyne_mouthwash
|
fa53e50319d8
|
sensodyne_mouthwash
|
2
|
|
20sensodyne_toothpaste
|
cb2be20afcb4
|
sensodyne_toothpaste
|
2
|
|
24rexona_spray
|
bc4e1b226e6b
|
rexona_spray
|
3
|
|
22sensodyne_mouthwash
|
9bd9216b4a5a
|
sensodyne_mouthwash
|
3
|
|
26nivea_baby
|
cfd423e901f1
|
nivea_baby
|
3
|
|
23nivea_rollon
|
885059e1b252
|
nivea_rollon
|
3
|
|
0rocher_chocolate
|
e03fa5462ee3
|
rocher_chocolate
|
3
|
|
26nivea_baby
|
b100c54366ba
|
nivea_baby
|
2
|
|
27johnson_baby
|
775c598d2cea
|
johnson_baby
|
2
|
|
1milka_chocolate
|
9a4fa62869fe
|
milka_chocolate
|
2
|
|
1milka_chocolate
|
a7e2b455335a
|
milka_chocolate
|
3
|
|
0rocher_chocolate
|
866669da7731
|
rocher_chocolate
|
3
|
|
4toblerone_black
|
9151a255fe58
|
toblerone_black
|
2
|
|
6lays_chill
|
15338989dbf0
|
lays_chill
|
2
|
|
7pringles_original
|
5a1c3efa27ba
|
pringles_original
|
2
|
|
20sensodyne_toothpaste
|
c31de9e343b9
|
sensodyne_toothpaste
|
2
|
|
14heinz_mayo
|
dc3570dac19b
|
heinz_mayo
|
3
|
|
18loreal_shampoo
|
d5a3f00c52d7
|
loreal_shampoo
|
2
|
|
14heinz_mayo
|
750c853b7a14
|
heinz_mayo
|
3
|
|
19dove_soap
|
50fc66d37b9c
|
dove_soap
|
2
|
|
5lays_classic
|
a2f2c31638db
|
lays_classic
|
2
|
|
5lays_classic
|
9a9a588838c3
|
lays_classic
|
2
|
|
25dove_spray
|
f4cf8fa9b44c
|
dove_spray
|
2
|
|
9nestle_water
|
1b1ef5406a31
|
nestle_water
|
3
|
|
18loreal_shampoo
|
37d819460751
|
loreal_shampoo
|
3
|
|
6lays_chill
|
80218a5ef101
|
lays_chill
|
3
|
|
27johnson_baby
|
08c1e5333e14
|
johnson_baby
|
2
|
|
13heinz_ketchup
|
2a53fe8ba9d6
|
heinz_ketchup
|
3
|
|
21colgate_toothpaste
|
a87598eeaa32
|
colgate_toothpaste
|
2
|
|
1milka_chocolate
|
58396f87dae0
|
milka_chocolate
|
3
|
|
26nivea_baby
|
d487479885e8
|
nivea_baby
|
3
|
|
1milka_chocolate
|
a23782860b8e
|
milka_chocolate
|
2
|
|
7pringles_original
|
0131204beb3e
|
pringles_original
|
3
|
|
21colgate_toothpaste
|
f61580c90f2a
|
colgate_toothpaste
|
2
|
|
1milka_chocolate
|
eef168a4b0db
|
milka_chocolate
|
2
|
|
3toblerone_white
|
c62f6534ebab
|
toblerone_white
|
2
|
|
16barilla_pomodoro
|
5518f101e847
|
barilla_pomodoro
|
3
|
|
2kinder_chocolate
|
83ebbd3c5789
|
kinder_chocolate
|
3
|
|
0rocher_chocolate
|
a5be55766201
|
rocher_chocolate
|
3
|
|
11redbull_energydrink
|
e02bcaed23f6
|
redbull_energydrink
|
2
|
|
7pringles_original
|
250d27caf0ec
|
pringles_original
|
3
|
|
26nivea_baby
|
82a4817ada4d
|
nivea_baby
|
3
|
|
20sensodyne_toothpaste
|
e6aa23e79f96
|
sensodyne_toothpaste
|
2
|
|
14heinz_mayo
|
987ddc9395c9
|
heinz_mayo
|
2
|
End of preview. Expand
in Data Studio
Micro Market Experience (MIMEX) Product Recognition Dataset
Dataset Description
The Micro Market Experience (MIMEX) Dataset is a comprehensive collection of product images tailored for retail and consumer product classification tasks. This dataset encompasses 15,277 images across 28 product categories, including chocolates, snacks, beverages, personal care items, and food products.
Dataset Features
- Total Images: 15,277
- Number of Classes: 28
- Splits: Train (10,357) / Test (4,920)
- Image Format: PNG, RGB
- Resolution: Variable (original product images)
Product Categories
The dataset includes the following 28 product categories:
- 0: Rocher Chocolate
- 1: Milka Chocolate
- 2: Kinder Chocolate
- 3: Toblerone White
- 4: Toblerone Black
- 5: Lays Classic
- 6: Lays Chill
- 7: Pringles Original
- 8: Pringles Paprika
- 9: Nestle Water
- 10: Sanpellegrino Water
- 11: Redbull Energydrink
- 12: Monster Energydrink
- 13: Heinz Ketchup
- 14: Heinz Mayo
- 15: Barilla Pesto
- 16: Barilla Pomodoro
- 17: Barilla Lasagne
- 18: Loreal Shampoo
- 19: Dove Soap
- 20: Sensodyne Toothpaste
- 21: Colgate Toothpaste
- 22: Sensodyne Mouthwash
- 23: Nivea Rollon
- 24: Rexona Spray
- 25: Dove Spray
- 26: Nivea Baby
- 27: Johnson Baby
Dataset Structure
mimex-dataset/
βββ train/ # Training images (10,357 samples)
βββ test/ # Test images (4,920 samples)
βββ metadata/ # Dataset information and mappings
Data Fields
- image: PIL Image of the product
- label: Integer class label (0-27)
- image_hash: Unique 12-character hash identifier
- product_name: Human-readable product name
- sample_id: Original sample identifier from source dataset
How to Use
Loading the Dataset
from datasets import load_dataset
# Load the full dataset
dataset = load_dataset("Anilot/MIMEX")
# Load specific split
train_dataset = load_dataset("Anilot/MIMEX", split="train")
test_dataset = load_dataset("Anilot/MIMEX", split="test")
print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")
Basic Usage Example
import matplotlib.pyplot as plt
from datasets import load_dataset
# Load dataset
dataset = load_dataset("Anilot/MIMEX", split="train")
# Show first few samples
fig, axes = plt.subplots(2, 3, figsize=(12, 8))
for i, ax in enumerate(axes.flat):
sample = dataset[i]
ax.imshow(sample['image'])
ax.set_title(f"{sample['product_name']}\nLabel: {sample['label']}")
ax.axis('off')
plt.tight_layout()
plt.show()
License
This dataset is released under the MIT License. Please cite appropriately if used in research.
Citation
If you use this dataset in your research, please cite:
Tur, Anil Osman, et al. "Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models." 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI). IEEE, 2024.
DOI: 10.1109/RTSI61910.2024.10761839
BibTeX
@inproceedings{tur2024exploring,
title={Exploring Fine-grained Retail Product Discrimination with Zero-shot Object Classification Using Vision-Language Models},
author={Tur, Anil Osman and Conti, Alessandro and Beyan, Cigdem and Boscaini, Davide and Larcher, Roberto and Messelodi, Stefano and Poiesi, Fabio and Ricci, Elisa},
booktitle={2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI)},
pages={97--102},
year={2024},
organization={IEEE}
}
- Downloads last month
- 9