ODEN‑speech 🗣️🇮🇳
Odia Diverse ENsemble Speech Corpus
ODEN‑speech merges eight publicly‑available Odia (ଓଡ଼ିଆ) speech corpora into a single 16 kHz, speaker‑aware, text‑cleaned dataset suitable for ASR, TTS, representation learning and multilingual research.
✨ Highlights
🗂️ Source | Hours | License |
---|---|---|
Mozilla Common Voice 17 (Odia) | 110 h | MPL‑2.0 |
LibriTTS (clean + other) | 170 h | CC‑BY‑4.0 |
LJSpeech 1.1 | 24 h | CC‑BY‑4.0 |
VCTK (Odia & misc.) | 40 h | CC‑BY‑4.0 |
IndicTTS (SPRING Lab) | 35 h | CC‑BY‑SA‑4.0 |
MUCS 2023 (Odia) | 50 h | CC‑BY‑SA‑4.0 |
Sayantan Odia TTS | 18 h | CC‑BY‑SA‑4.0 |
Total | ≈ 462 h | – |
- Every WAV is re‑sampled to 16 kHz / mono.
- Text is normalised (Unicode NFC, punctuation cleanup) without losing Odia matras.
- Speaker / gender / duration / original‑dataset fields preserved.
- Stratified train / validation / test splits (90 / 5 / 5 %).
📦 Dataset structure
id: string # unique key
audio: dict(path, bytes, sampling_rate)
text: string # normalised Odia sentence
speaker: string # e.g. cv_or_spk_42
gender: string # male | female | unknown
dataset: string # source corpus tag
duration: float32 # seconds
sample_rate: int32 # 16000 for all
Tip: with
datasets
you can stream only thetext
column for language modelling:
ds = load_dataset('BBSRguy/ODEN-speech', split='train', streaming=True) texts = ds.with_format("text")['text']
🚀 Usage
Automatic Speech Recognition (ASR)
from datasets import load_dataset, Audio
ds = load_dataset("BBSRguy/ODEN-speech", split="train", streaming=True)
def preprocess(batch):
audio = batch["audio"]
inputs = processor(audio["array"], sampling_rate=16_000, text=batch["text"])
return inputs
asr_ds = ds.map(preprocess)
Text‑to‑Speech (TTS)
from datasets import load_dataset
ds = load_dataset("BBSRguy/ODEN-speech", split="train")
example = ds[0]
print(example["text"])
print(example["audio"]["path"]) # path on local cache
Inline audio preview
🏗️ Building the corpus
🔒 License
All constituent corpora are at least CC‑BY or CC‑BY‑SA. The merged dataset is distributed under CC‑BY‑4.0. Please credit “@BBSRguy · ODEN‑speech” in derivative works.
🙏 Acknowledgements
We thank Mozilla, SPRING Lab, CMU, the MUCS programme, and every volunteer contributor for making high‑quality Odia speech available.
👩💻 Contributing
Pull‑requests welcome! Upload additional Odia recordings (CC‑BY) or improved transcriptions and open an issue or PR.
Created with ❤️ by @BBSRguy – 2025‑05‑28
- Downloads last month
- 31