rvv-karma/Human-Action-Recognition-VIT-Base-patch16-224
			Image Classification
			• 
		
				85.8M
			• 
	
				Updated
					
				
				• 
					
					1.17k
				• 
			
	
				• 
					
					10
				
image
				 
			imagewidth (px) 84 
			478 
			 | labels
				 
			class label 15
				classes  | 
|---|---|
11sitting
 
							 | 
					|
14using_laptop
 
							 | 
					|
7hugging
 
							 | 
					|
12sleeping
 
							 | 
					|
14using_laptop
 
							 | 
					|
12sleeping
 
							 | 
					|
4drinking
 
							 | 
					|
7hugging
 
							 | 
					|
1clapping
 
							 | 
					|
3dancing
 
							 | 
					|
2cycling
 
							 | 
					|
4drinking
 
							 | 
					|
1clapping
 
							 | 
					|
0calling
 
							 | 
					|
12sleeping
 
							 | 
					|
4drinking
 
							 | 
					|
0calling
 
							 | 
					|
8laughing
 
							 | 
					|
14using_laptop
 
							 | 
					|
14using_laptop
 
							 | 
					|
1clapping
 
							 | 
					|
5eating
 
							 | 
					|
6fighting
 
							 | 
					|
9listening_to_music
 
							 | 
					|
3dancing
 
							 | 
					|
4drinking
 
							 | 
					|
2cycling
 
							 | 
					|
8laughing
 
							 | 
					|
4drinking
 
							 | 
					|
3dancing
 
							 | 
					|
9listening_to_music
 
							 | 
					|
2cycling
 
							 | 
					|
11sitting
 
							 | 
					|
11sitting
 
							 | 
					|
12sleeping
 
							 | 
					|
5eating
 
							 | 
					|
10running
 
							 | 
					|
10running
 
							 | 
					|
7hugging
 
							 | 
					|
7hugging
 
							 | 
					|
0calling
 
							 | 
					|
14using_laptop
 
							 | 
					|
9listening_to_music
 
							 | 
					|
2cycling
 
							 | 
					|
12sleeping
 
							 | 
					|
7hugging
 
							 | 
					|
13texting
 
							 | 
					|
12sleeping
 
							 | 
					|
14using_laptop
 
							 | 
					|
10running
 
							 | 
					|
7hugging
 
							 | 
					|
0calling
 
							 | 
					|
14using_laptop
 
							 | 
					|
4drinking
 
							 | 
					|
7hugging
 
							 | 
					|
2cycling
 
							 | 
					|
8laughing
 
							 | 
					|
0calling
 
							 | 
					|
1clapping
 
							 | 
					|
8laughing
 
							 | 
					|
13texting
 
							 | 
					|
11sitting
 
							 | 
					|
8laughing
 
							 | 
					|
14using_laptop
 
							 | 
					|
12sleeping
 
							 | 
					|
9listening_to_music
 
							 | 
					|
2cycling
 
							 | 
					|
1clapping
 
							 | 
					|
13texting
 
							 | 
					|
13texting
 
							 | 
					|
5eating
 
							 | 
					|
2cycling
 
							 | 
					|
4drinking
 
							 | 
					|
0calling
 
							 | 
					|
10running
 
							 | 
					|
4drinking
 
							 | 
					|
13texting
 
							 | 
					|
11sitting
 
							 | 
					|
0calling
 
							 | 
					|
7hugging
 
							 | 
					|
5eating
 
							 | 
					|
12sleeping
 
							 | 
					|
14using_laptop
 
							 | 
					|
14using_laptop
 
							 | 
					|
10running
 
							 | 
					|
0calling
 
							 | 
					|
14using_laptop
 
							 | 
					|
14using_laptop
 
							 | 
					|
9listening_to_music
 
							 | 
					|
0calling
 
							 | 
					|
3dancing
 
							 | 
					|
8laughing
 
							 | 
					|
2cycling
 
							 | 
					|
1clapping
 
							 | 
					|
14using_laptop
 
							 | 
					|
0calling
 
							 | 
					|
3dancing
 
							 | 
					|
4drinking
 
							 | 
					|
13texting
 
							 | 
					|
6fighting
 
							 | 
					
A dataset from kaggle. origin: https://dphi.tech/challenges/data-sprint-76-human-activity-recognition/233/data
The data instances have the following fields:
image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].labels: an int classification label. All test data is labeled 0.{
    'calling': 0,
    'clapping': 1,
    'cycling': 2,
    'dancing': 3,
    'drinking': 4,
    'eating': 5,
    'fighting': 6,
    'hugging': 7,
    'laughing': 8,
    'listening_to_music': 9,
    'running': 10,
    'sitting': 11,
    'sleeping': 12,
    'texting': 13,
    'using_laptop': 14
}
| train | test | |
|---|---|---|
| # of examples | 12600 | 5400 | 
>>> from datasets import load_dataset
>>> ds = load_dataset("Bingsu/Human_Action_Recognition")
>>> ds
DatasetDict({
    test: Dataset({
        features: ['image', 'labels'],
        num_rows: 5400
    })
    train: Dataset({
        features: ['image', 'labels'],
        num_rows: 12600
    })
})
>>> ds["train"].features
{'image': Image(decode=True, id=None),
 'labels': ClassLabel(num_classes=15, names=['calling', 'clapping', 'cycling', 'dancing', 'drinking', 'eating', 'fighting', 'hugging', 'laughing', 'listening_to_music', 'running', 'sitting', 'sleeping', 'texting', 'using_laptop'], id=None)}
 
>>> ds["train"][0]
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=240x160>,
 'labels': 11}