Datasets:

ArXiv:
Dataset Preview
The table displays a preview with only the first rows.
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 5 new columns ({'review_positive', 'review_score', 'review_negative', 'review_title', 'review_helpful_votes'}) and 1 missing columns ({'user_id'}).

This happened while the csv dataset builder was generating data using

hf://datasets/Booking-com/accommodation-reviews/rectour24/train_reviews.csv (at revision 7292684aee2d49e33f68d1f2bc74e4488b091dce)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              review_id: string
              accommodation_id: int64
              review_title: string
              review_positive: string
              review_negative: string
              review_score: double
              review_helpful_votes: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1156
              to
              {'accommodation_id': Value(dtype='int64', id=None), 'review_id': Value(dtype='string', id=None), 'user_id': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 5 new columns ({'review_positive', 'review_score', 'review_negative', 'review_title', 'review_helpful_votes'}) and 1 missing columns ({'user_id'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/Booking-com/accommodation-reviews/rectour24/train_reviews.csv (at revision 7292684aee2d49e33f68d1f2bc74e4488b091dce)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

accommodation_id
int64
review_id
string
user_id
string
842,298,552
9b7015a7-73a2-4ce0-94ff-309f27d1f5fb
495ef092-0399-4fcf-a6d1-7b4f52b7de04
1,596,437,394
826320b2-f123-42f7-b5b9-6df66895f959
312f1bc9-fdd9-4f3c-ac9e-5821919eebf7
-1,257,837,707
34b17750-7827-45f7-a797-42b92f427a8f
80f94a05-de92-49fb-b259-dd1c34bcf442
760,669,881
51153c31-19d4-4d93-807d-c0a55ff3eb91
3821d21d-d973-4b36-bc03-1b986c67759c
-1,914,121,319
9741bdd6-91cf-4ed5-9f6b-761222eb5533
5e43d83e-8e68-4b33-a43b-794db3272e72
-1,159,078,222
ad3c08ad-1313-4df5-9ff4-2580a3a7b716
1d014985-6ecf-44d4-b3fe-2a9232b7b54c
-298,765,330
0926d786-138b-414f-998e-b1ae5a69511b
76ce65ed-0fdd-499f-9028-1d60abd28e78
639,512,652
5b6bb1a8-a2da-472b-af85-f5b9e4255282
e003e14c-1573-4db5-aaef-6502ade7733d
1,743,191,055
ae587998-065c-4307-9ab7-05995db8d364
d31f2c43-8ad0-4600-87f0-63ad45d8197f
-650,058,398
da0d5321-804a-4f7d-9e7d-a25b8f449edb
eb97d45f-701d-4979-845f-a626a43a0c06
-2,005,618,708
5bca7ed3-f6a9-4d2a-8ca6-b21c691c9bf5
557bc43e-8765-4264-910c-09d85b2ee016
1,770,111,340
5b1befc0-e8fb-450b-970c-28b7e8c2069b
60a29a0d-c393-41c9-935b-d3f4fcc98f3e
-2,123,217,228
62e677b8-6d13-4044-a01b-6aefa6cfac94
271e0ced-8022-4111-981c-06c298870d31
-57,400,887
39b4d5ee-9c15-45f9-8ab4-f68d67aa13f0
aa565f0d-14d7-4375-8156-6c78f606068b
-526,013,592
3c565a65-8e2b-4a09-b1c8-2ba9f77ebb78
eec3d065-ee9c-4c2c-b746-52b9f4f1fafd
-1,910,296,631
25edb845-b48a-4d86-976d-39be64834504
1ae4b2fd-347b-4621-a5fe-f1f18460bb90
-1,880,139,766
bfc7d671-0ca0-437d-9cb5-1d8c2c1a41ad
dde2ddee-a832-4f77-b0aa-db60760d7db0
-1,300,865,214
b8c07907-297a-4619-9bc2-6fb9ac0f8fac
d7b36e45-4b88-4fa0-98c4-26b4bf58a4a5
1,401,228,916
3a1d124b-daa9-4ac6-8115-db48f5edf2b5
06f35290-31fe-47bf-b72a-a53111ca0997
160,682,111
ea9ab997-4ca3-482f-8b8f-056c4ceafd4c
add045c7-7713-42f5-be56-39425f1eb51a
354,972,897
9e2d2ab7-7977-45cf-be19-76e18fa9bffa
c9deaf58-fcfa-413c-98de-50ce184645c7
1,286,201,902
05b4f802-31bb-4a7c-86ef-06204177afb1
cbe5c1c7-8d24-4a24-b03e-f9faa8ec2aaa
2,131,474,732
8c17f57b-752e-421e-a651-f2690d85df7f
6d254913-93be-4c41-8506-4eedf68cdffb
1,570,935,802
7d08688f-0db4-4861-b175-078100b9ebd5
690252bb-12eb-4190-bdcd-cf98f7105974
-1,786,649,723
527a2619-a9a6-4a85-8382-c7330c9875ac
48da54c5-228f-40c6-a8f1-c939db15b160
-1,344,970,131
f58dd297-8507-49a1-a7c0-3a1bc1b86d13
5da465e1-46dc-4e85-a1ac-ec4ed3d554b9
-565,530,733
c05ecbd6-0cca-4c68-936b-9de0bcab7bcb
148c91d7-36a4-498d-bea1-a8ef21d98385
594,471,075
c1a3c2a6-8ca6-4360-8cde-09134e18869c
ce23f038-e2c6-4dbe-9e4e-aa503699834f
215,285,681
d781efcf-fd6f-485a-9a2b-5a9af4835a01
78ea5cf3-42f2-4bf0-9c8b-758f21782195
1,588,350,157
6a1fd487-4362-4f78-84c4-6f26a5f44a80
d80e18b0-cc80-4ef4-a004-eddcc2d3e204
1,482,461,278
c65da3a9-61dc-45cd-814b-cf28852f3c09
10409f83-2f74-48dc-addb-a2b36d4a195e
-1,354,044,772
14daf391-62ba-4b24-aa7e-4963b091bd24
fcf77c8d-332a-4be8-8b9c-325cea80d46b
-748,110,701
75b5120c-bf75-4446-be49-03d1a42b62b9
e77a436a-d9c3-4338-a8a9-152a94e9c5a0
-1,536,909,841
3a729277-688c-43e2-9e72-2e05a61f2c00
a79ea880-fe6b-4f9e-8381-6e002a0505cf
-466,997,400
66c2fed2-2fbb-418d-8533-e2b81d104f16
d6d507f3-0dbd-4c47-a6f6-4b84e375e079
1,842,056,846
c8849dbb-1d4e-4367-8894-4ecea56e5d6d
c4b443f1-8d47-485a-8a55-d18615226080
-573,353,656
61e12f51-3ed8-449a-88b8-6122825dc368
86cd03ab-d241-4518-8f33-7a7104e2edc4
-1,333,477,874
9a18e84e-e55e-404c-9f08-d01cbcdedf67
b3e3993e-820e-4f5b-adfe-6f260dad92f1
108,113,176
dfdad541-3d12-42be-a33c-8c0c4fcfc739
d745f31b-8b06-40f1-a8da-88d1de444460
267,406,881
4ac5ea24-0fa7-49e7-9781-a020f466a5f1
beb68de4-17d8-4e42-8ebd-ed88bf9d51cc
176,299,139
389334c1-4eff-4ab4-8cc6-64513cffb939
6ad01f45-51d5-4af4-9a79-fec20916a5b7
-2,067,816,368
386a13ec-9abf-464d-a5ae-435b9f134cdc
9ac12c56-cd3d-44b3-8542-c05016c056c6
-1,822,769,822
7c411e23-fbdd-4776-b1c9-c3a416b09cce
b0bc7a7e-c471-4b75-a7f1-54ecb7cf3498
1,290,956,262
c1263d37-c88c-402c-b2cb-fea9792f7401
08506a24-0aeb-49dd-9367-1707ca6c4bfe
1,572,518,821
dcf5d204-fa0c-4e35-b5de-b5c01ab824ce
f84451d4-78fa-4829-9820-b828caa53b6c
-1,609,584,023
0ecf4220-5036-42d7-84cf-32e119bbfd45
f8d25ba2-3cfc-40dd-94bc-02f01b1d0b2d
2,084,310,515
a32b113f-152f-445c-bbf6-af722f966d96
b49e666e-6aca-42d2-9b42-1e92186e5141
903,829,953
8bba37c0-4303-4dda-9fe6-25171c28c8c1
94f2196f-ddb8-46f6-8a88-7377acd243f3
-1,344,821,242
fc29e001-19b8-4397-8195-20bcffb59030
0dfec7de-d2c2-48e7-aa6c-7f47f12857a5
1,179,247,747
0a8430d4-f6d8-428e-a4da-2fe460243858
ccd97e1e-c3f5-429f-8032-c36b529541d7
-1,574,393,857
229e745a-c225-4b5e-b86c-2568caed719b
48727652-4dbd-463a-8c8c-702d18e652f2
-1,429,975,449
553dbad3-ffcb-4cad-ad11-6436e5d93b11
01ee6a66-3ee9-4109-9671-4892f0912663
-259,766,667
148e4a61-c7a7-445b-b5c4-8f1519c756ee
36c2946b-57fc-45dc-b8cf-b43bd174a002
-292,638,733
34a6cf2f-a9b4-4dd8-88fc-921a7329f4ed
a599c8e4-baa7-415c-8989-256ffc600875
-1,201,631,833
75b673ef-b974-4dd8-bba0-c5af795f6c46
53f331c4-0f90-477b-b701-02957b171a73
-1,718,214,209
98e9ea49-4734-40e2-8b49-83216b81383b
e8d930bc-2947-4a50-8e4b-4376545aa6aa
-1,238,746,323
71b1c703-c347-4cc7-bff3-fa5e743b3057
177f77f0-3249-436f-8568-1d68aca720c5
1,186,430,576
a34ba7bf-7d13-43ce-8a68-4ee3cfd093c6
9ea03d0f-d902-40e8-adef-d32074e08995
857,797,267
1a801c37-92ec-4b77-b509-772197985920
3954363e-f045-4204-92fa-231c59eac0dc
1,110,759,460
cc18eba3-a78a-4622-94ae-85a183b2062a
8f6be9ad-6cbf-4616-ba26-4ca87f06470e
299,150,943
d24a91ad-23b1-478b-9da4-c7f764e6374e
53ad2278-5bc0-4f2d-8063-6f9c1fc74c44
577,860,068
d15173aa-0886-4dcd-b67a-eb94251e801a
bb31ac24-17d3-4adf-b5b9-12b36d08324e
-1,859,457,855
9867bc6a-f051-49bc-bf9e-a65d215201f8
db216811-1a23-4458-b822-a6937b7d96c7
-992,910,708
e2025757-5396-44cf-9fc2-16b1f0817421
104f7a5c-1194-4eb4-ba11-a09ce95d5631
1,076,217,634
7de528ab-fe36-4cd8-a635-7283adbdcd4d
9feb7b1f-a840-4788-953b-5a7c8241ed42
-995,461,609
30bc2321-0ec6-48eb-86c4-342a18c81b07
75ba2600-c8f7-42fa-8147-23a17e152682
-334,074,271
be7a3435-0d21-4960-b9c0-349d738e24e5
ec1dd5b2-c4f7-467c-9698-bd8573b6ddf1
499,730,129
9914fd21-becc-4e10-b67f-656a9323ecaa
325ee6da-3912-4e17-97e3-67477322ba01
1,829,415,926
f512ad8d-5e9e-4766-97bd-87fdae27286b
1092a4b9-cef7-4c18-a962-91df4db1db0a
-1,275,401,570
2b5e7a9a-93f7-4613-a5c8-4147b3d4405c
b83233f4-99c9-4e0d-a728-3a298cee68ee
-382,526,103
cdbc53c0-d097-4d38-a3ae-51a24b6f987d
a4c2a664-f958-47ac-987e-ccbb71f0b150
1,035,003,406
09b4bc62-79d5-4d26-b646-73f25d52dc78
205a1b3c-30a4-4e5c-a3d0-02242f240dbf
417,895,080
53d2ef28-c04f-41ba-8c7b-24d1fee22590
ced3c969-04b5-4035-bba1-2309f217cd2f
488,510,420
c92247c7-ed2d-4440-9652-7c9a65727dbe
4b5e0604-3920-4174-bd65-6336c5e740fb
-279,572,292
0750ce21-371e-40d0-839d-742a85df6d98
934a8bb5-2a8d-48cc-bc77-a704edafc8a0
591,459,209
e84661f3-a79d-4352-b461-e2bc2c11e1c1
cdeb145d-19e1-4d5e-ac57-646278029877
591,341,294
b1904c84-cf27-4e5d-9917-47859dd805d6
27bb3f03-2f8f-4702-b0fe-8c54ccb18713
2,029,203,998
0b34d3d7-a2bb-4b5f-bf57-b39f0d7af340
0c14a677-4ec4-4587-9b1e-860474038fa8
1,499,411,603
3b9fe270-e53f-4206-a7b3-a175d5be0799
4ce621b9-cd34-4e06-8ee1-ae194431bfcf
-586,994,837
0a2686d9-84e4-4244-beed-8f636c96a18c
4b9ccbb2-cf7b-4a5e-820c-94c2d3b2e4f3
-535,267,443
d971ae65-75d1-4661-b761-563836494dc2
b1b820d9-79db-497a-914c-b483e246a1e8
1,384,676,389
1d6f68b1-0e67-4c6c-b236-82fc2c1fb001
3019efe3-d157-40c8-918b-60a408db49c2
840,669,862
7d51ba0f-a2c4-4637-a99d-7b3065d554ff
f0093412-7eea-4ed6-b423-9b431eb82895
1,860,318,030
a783b374-6dd3-4e1d-b6cc-e7e6600f6f60
c68e6817-7809-4cd0-9a1d-62b1ea4e32b7
1,351,681,432
474416e1-ed83-4b03-8535-9d3e51d37756
dc0933f2-3198-4e86-b1a4-d415ffbe6be1
2,041,622,331
6e45e3a2-2e95-4400-9743-5248a6a21b7c
e916ef6a-7b8d-4718-af7e-fbc7675e4392
-526,013,592
e098f28a-2563-4b72-93b9-3539f2876dd0
fc58326b-a23f-421a-97c9-15709762963c
2,087,575,977
3b0a0dd7-2514-4173-9f29-0ae1a3d3fc7d
4a8cd7d1-ed2b-472e-b000-1a45ce62a1ee
-162,567,005
437a32f8-2997-4c25-9b83-b1121fcc784e
7f33ec3b-e138-4a2d-b65c-f9662d7aa187
-1,552,826,604
569b75c6-54f9-4988-96ba-b85e73563c78
42286dca-dcd2-4d8c-9492-26a65463dce5
709,127,278
4d524521-3d78-450a-bf7d-9dd307bb9ee4
3c37837f-9a91-447c-b1ac-f365c5ac4d2b
170,983,351
21ce17dc-ae0b-4fff-aadf-6009b2d358d6
7293f487-95b4-4e06-81ee-022dd93742d5
1,659,947,058
ab7d8740-9162-4b17-95fd-7be53e85f417
c1f1b91a-be12-403b-9432-fca15d059f6c
629,480,361
e0bb6bb1-2752-4eee-abbd-a78187446770
f546999c-d7f2-4acb-9753-19ddb1857558
-1,437,552,600
0453c8e7-560f-4422-bf7b-967abcd2e40e
0b4cb693-465b-4e4c-8dd5-293dbeb1753c
635,038,974
0f2e0980-ff10-42c0-b343-f423b3117b90
04ec683c-ac13-4cf9-b887-c5c53c1c7fd3
-207,515,806
365dc941-a4c6-45f4-890e-74621a3b3e7d
05407d44-501d-426f-973d-8d7cb4d877c9
-21,796,264
f79f5def-8d67-4e7c-b875-31bb6a67ae4a
2511f4db-3ed1-4337-bda0-153cdfd39446
-325,296,404
0b6f0b2a-65a1-489f-b6e9-c9f192a2aa07
4bb2fe5a-da87-4abd-afa6-b33b6f53ab96
2,889,363
9c251362-aa5c-4ecb-a9a5-86e1c400c633
3e6333fc-19b3-4d41-93cb-e087196c58b4
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Booking.com Accommodation Review Dataset

This repository contains the training set of the user-generated review dataset of Booking.com reviews. The training set contains about 1.6M reviews from 40k accommodations around the world. All reviews were written by guests who stayed at the accommodation.

The dataset consists of English reviews published in 2023. All reviews have passed a moderation process ensuring they are genuine and do not violate the platform guidelines. In order to preserve user privacy, no personally identifiable information was included in the data. Similarly, to protect business-sensitive statistics, the dataset is limited to only tens of thousands accommodations. Finally, we selected only informative reviews that include at least 3 topics based on the Text2topic model.

The following table describes the fields in the dataset:

Column Description
review_title The title of the review
review_positive Positive ("liked") section in review.
review_negative Negative ("disliked") section in review.
guest_score Review score for the stay
review_helpful_votes How many users marked the review as helpful
guest_type There are 4 types of traveller types: Solo traveller (1 adult) /
Couple (2 adults) / Group (>2 adults) / Family with
children (adults & children)
guest_country Anonymized country from which the reservation was made
room_nights The length of the reservation, i.e. number of nights booked
month The month of the check-in date of the reservation
accommodation_id An anonymized accommodation ID
accommodation_type The type of the accommodation, e.g. hotel, apartment, hostel
accommodation_score The overall average guest review score for the accommodation
accommodation_country Country of the accommodation
accommodation_star_rating Accommodation star rating is provided by the property, and is
usually determined by an official accommodation rating
organisation or another third party
location_is_beach Is the accommodation located in a beach location
location_is_ski Is the accommodation located in a ski location
location_is_city_center Is the accommodation located in the city center

License

The dataset is published under the following non-commercial license

Citation

Paper on arXiv

@misc{igebaria2024enhancingtraveldecisionmakingcontrastive,
      title={Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations}, 
      author={Reda Igebaria and Eran Fainman and Sarai Mizrachi and Moran Beladev and Fengjun Wang},
      year={2024},
      eprint={2407.00787},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2407.00787}, 
}
Downloads last month
64