rossi_2021 / README.md
cmatkhan's picture
Upload README.md with huggingface_hub
715c306 verified
metadata
license: mit
tags:
  - transcription-factor
  - binding
  - chipexo
  - genomics
  - biology
language:
  - en
pretty_name: Rossi ChIP-exo 2021
configs:
  - config_name: metadata
    description: Metadata describing the tagged regulator in each experiment
    data_files:
      - split: train
        path: rossi_2021_metadata.parquet
    dataset_info:
      features:
        - name: regulator_locus_tag
          dtype: string
          description: Systematic gene name (ORF identifier) of the transcription factor
        - name: regulator_symbol
          dtype: string
          description: Standard gene symbol of the transcription factor
        - name: run_accession
          dtype: string
          description: GEO run accession identifier for the sample
        - name: yeastepigenome_id
          dtype: string
          description: Sample identifier used by yeastepigenome.org
  - config_name: genome_map
    description: ChIP-exo 5' tag coverage data partitioned by sample accession
    data_files:
      - split: train
        path: genome_map/*/*.parquet
    dataset_info:
      features:
        - name: chr
          dtype: string
          description: Chromosome name (e.g., chrI, chrII, etc.)
        - name: pos
          dtype: int32
          description: Genomic position of the 5' tag
        - name: pileup
          dtype: int32
          description: Depth of coverage (number of 5' tags) at this genomic position
  - config_name: rossi_annotated_features
    description: ChIP-exo regulator-target binding features with peak statistics
    dataset_type: annotated_features
    default: true
    metadata_fields:
      - regulator_locus_tag
      - regulator_symbol
      - target_locus_tag
      - target_symbol
    data_files:
      - split: train
        path: yeastepigenome_annotatedfeatures.parquet
    dataset_info:
      features:
        - name: sample_id
          dtype: int32
          description: Unique identifier for each ChIP-exo experimental sample.
        - name: pss_id
          dtype: float64
          description: >-
            Current brentlab promotersetsig table id. This will eventually be
            removed.
        - name: binding_id
          dtype: float64
          description: Current brentlab binding table id. This will eventually be removed.
        - name: yeastepigenome_id
          dtype: float64
          description: Unique identifier in the yeastepigenome database.
        - name: regulator_locus_tag
          dtype: string
          description: Systematic ORF name of the regulator.
          role: regulator_identifier
        - name: regulator_symbol
          dtype: string
          description: Common gene name of the regulator.
          role: regulator_identifier
        - name: target_locus_tag
          dtype: string
          description: >-
            The systematic ID of the feature to which the effect/pvalue is
            assigned. See hf/BrentLab/yeast_genome_resources
          role: target_identifier
        - name: target_symbol
          dtype: string
          description: >-
            The common name of the feature to which the effect/pvalue is
            assigned. If there is no common name, the `target_locus_tag` is
            used.
          role: target_identifier
        - name: n_sig_peaks
          dtype: float64
          description: Number of peaks in the promoter region of the the target gene
          role: quantitative_measure
        - name: max_fc
          dtype: float64
          description: >-
            If there are multiple peaks in the promoter region, then the maximum
            is reported. Otherwise, it is the fold change of the single peak in
            the promoter.
          role: quantitative_measure
        - name: min_pval
          dtype: float64
          description: 'The most significant p-value among peaks for this interaction. '
          role: quantitative_measure

Rossi 2021

This data is gathered from yeastepigenome.org. This work was published in

Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. A high-resolution protein architecture of the budding yeast genome. Nature. 2021 Apr;592(7853):309-314. doi: 10.1038/s41586-021-03314-8. Epub 2021 Mar 10. PMID: 33692541; PMCID: PMC8035251.

Dataset details

genome_map is fully reprocessed data from the sequence files. I used the nf-core/chipseq pipeline, details for which can be found in scripts/. With those bams, I filtered the reads using samtools and the same settings specified in Rossi et al 2021, and then counted 5' ends using bedtools. See scripts/count_tags.sh.

Data Structure

Metadata

Field Description
regulator_locus_tag Systematic gene name (ORF identifier) of the transcription factor
regulator_symbol Standard gene symbol of the transcription factor
run_accession GEO run accession identifier for the sample
yeastepigenome_id Sample identifier used by yeastepigenome.org

Genome Map

Field Description
chr Chromosome name, ucsc (e.g., chrI, chrII, etc.)
pos Genomic position of the 5' tag
pileup Depth of coverage (number of 5' tags) at this genomic position

Usage

The entire repository is large. It may be preferable to only retrieve specific files or partitions. You can use the metadata files to choose which files to pull.

from huggingface_hub import snapshot_download
import duckdb
import os

# Download only the metadata first
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="rossi_2021_metadata.parquet"
)

dataset_path = os.path.join(repo_path, "rossi_2021_metadata.parquet")
conn = duckdb.connect()
meta_res = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", [dataset_path]).df()
print(meta_res)

We might choose to take a look at the file with accession SRR11466106:

# Download only a specific sample's genome coverage data
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="genome_map/accession=SRR11466106/*.parquet"
)

# Query the specific partition
dataset_path = os.path.join(repo_path, "genome_map")
result = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", 
                     [f"{dataset_path}/**/*.parquet"]).df()
print(result)